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Abstract: This paper studies the fault detection problem of linear periodic systems.
The aim is to design residual generators, which deliver a residual signal fully decoupled
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1. PROBLEM FORMULATION

During the last three decades, model based fault
detection (FD) technology has attracted much
attention (Gertler, 1998; Chen and Patton, 1999;
Frank et al., 2000; Patton et al., 2000). It is
well recognized that model-based fault detection
problem is indeed an output estimation problem.
In the context of linear time-invariant (LTI) sys-
tems, a number of approaches have been pro-
posed for the design of FD systems. Under cer-
tain conditions, the fault indicating signal, usu-
ally called residual, can be fully decoupled from
the unknown disturbances. To this aim, methods
like eigenstructure assignment, parity space, un-
known input observer etc. have been developed
(Gertler, 1998; Chen and Patton, 1999; Patton et
al., 2000).

Periodic systems are the simplest class of linear
systems next to LTI systems and exist in dif-
ferent areas (Bittanti and Colaneri, 1999; Souza
and Trofino, 2000). Periodic systems have also
been used to describe multirate sampled-data sys-
tems, nonlinear systems linearized along a peri-
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odic regime (Bittanti and Colaneri, 1999), and,
more recently, networked control systems with
periodic communication pattern (Rehbinder and
Sanfridson, 2004). Our study is motivated not
only by the continuous theoretical development
in periodic control and filtering (Xie and Souza,
1993; Bittanti and Colaneri, 1999; Lampe and
Rossenwasser, 2004) but also by the increasing
applications of periodic control in practice like
helicopter vibration control (Arcara et al., 2000),
satellite attitude control (Lovera et al., 2002) as
well as wind turbine (Stol, 2003). Extension of the
FD technique to periodic systems will improve the
safety and reliability of such applications.

This paper studies the full decoupling problem of
linear discrete-time periodic systems described by

x(k + 1) = Akx(k) + Bku(k) + Ed
kd(k) + Ef

k f(k)

y(k) = Ckx(k) + Dku(k) + F d
k d(k) + F f

k f(k)
(1)

where x ∈ Rn denotes the state vector, u ∈ Rp

the control input vector, y ∈ Rm the measured
output vector, d ∈ Rkd the disturbance vector,
and f ∈ Rkf the vector of faults to be de-
tected, Ak, Bk, Ck,Dk, Ed

k , Ef
k , F d

k , F f
k are known

real bounded periodic matrix functions of period



θ and with appropriate dimensions, namely, ∀k,[
Ak+θ Bk+θ Ed

k+θ Ef
k+θ

Ck+θ Dk+θ F d
k+θ F f

k+θ

]
=

[
Ak Bk Ed

k Ef
k

Ck Dk F d
k F f

k

]

The aim is to design a residual generator, so that
the residual r satisfies

(i) limk→∞ r(k) = 0, if f = 0 and no matter
what the control and disturbance inputs are;

(ii) r deviates from zero as long as f �= 0.

This work follows the pioneering work of Fadali
et al. (Fadali and Gummuluri, 2001) and Varga
(Varga, 2004). In the scheme of (Fadali and Gum-
muluri, 2001), first a periodic observer is de-
signed, then a bank of periodic FIR filters are
designed based on lifted reformulation of the sys-
tem over one period to achieve full disturbance
rejection. A computational approach is proposed
in (Varga, 2004), which realizes full disturbance
decoupling by computing a stable left annihilator
for the periodic system.

The first approach of this paper is motivated by
the observation that parity space approach treats
each time instant independently. It is shown that
the full decoupling problem of periodic systems
can be solved through a group of independent lin-
ear equations. A periodic relation based residual
generator with a periodic varying parity vector
can thus be easily obtained.

In the second part of the paper, it is shown
that if given a parity vector, then a periodic
observer based residual generator can be readily
constructed. Moreover, if the periodic parity vec-
tor realises a full decoupling, so does the resulting
periodic observer based residual generator. The
freedom in the observer gain can be used to meet
other FDI performance specifications.

2. PERIODIC PARITY SPACE APPROACH

The essence of parity space approach is to derive
the so-called parity relations (Chow and Will-
sky, 1984). It is widely accepted due to sim-
ple computation and straightforward implementa-
tion. In this section, we shall show that the parity
space approach can be easily extended to periodic
systems.

At time instant k, consider the input-output re-
lation of periodic system (1) during the moving
horizon [k − s, k], where s is a fixed integer and
represents the length of the horizon. Write k into

k = jθ + i + s

with j = 0, 1, 2, · · · , and i = 0, · · · , θ−1. A parity
relation is obtained as

Y (k) = Ho,ix(k − s) + Hu,iU(k)

+Hd,iD(k) + Hf,iF (k) (2)

where

Y (k) =
[
y′(k − s) y′(k − s + 1) · · · y′(k)

]′
U(k) =

[
u′(k − s) u′(k − s + 1) · · · u′(k)

]′
D(k) =

[
d′(k − s) d′(k − s + 1) · · · d′(k)

]′
F (k) =

[
f ′(k − s) f ′(k − s + 1) · · · f ′(k)

]′

Ho,i =

⎡
⎢⎢⎢⎣

Ci

Ci+1Ai

...
Ci+sAi+s−1 · · ·Ai+1Ai

⎤
⎥⎥⎥⎦ (3)

Hu,i =

⎡
⎢⎢⎢⎢⎣

Di O · · · O

Ci+1Bi Di+1
. . .

...
...

. . . O
Ci+s · · ·Ai+1Bi · · · Di+s

⎤
⎥⎥⎥⎥⎦

Hd,i =

⎡
⎢⎢⎢⎢⎣

F d
i O · · · O

Ci+1E
d
i F d

i+1

. . .
...

...
. . . O

Ci+s · · ·Ai+1E
d
i · · · F d

i+s

⎤
⎥⎥⎥⎥⎦

Hf,i =

⎡
⎢⎢⎢⎢⎣

F f
i O · · · O

Ci+1E
f
i F f

i+1

. . .
...

...
. . . O

Ci+s · · ·Ai+1E
f
i · · · F f

i+s

⎤
⎥⎥⎥⎥⎦

Due to the periodicity of system matrices, the
matrices Ho,i,Hu,i,Hd,i,Hf,i in parity relation
(2) is θ-periodic with respect to i. Based on
parity relation (2), a residual generator can be
constructed as

r(k) = vi(Y (k) − Hu,iU(k)) (4)

where r is the so-called residual signal, row vectors
vi, i = 0, 1, · · · , θ−1, are design parameters called
parity vector. If vi are selected in such a way that

vi

[
Ho,i Hd,i

]
= 0, viHf,i �= 0 (5)

for each i = 0, 1, · · · , θ − 1, then

r(k) = viHf,iF (k)

The residual will be influenced neither by the
initial state x(k − s) nor by the disturbance
vector d or the control input vector u. As a
result, the conditions (i)-(ii) are satisfied and a full
decoupling is realized. The existence condition for
solution of (5) is ∀i,

rank
[
Ho,i Hd,i Hf,i

]
> rank

[
Ho,i Hd,i

]
(6)

The relation between (6) and the condition pre-
sented in (Varga, 2004), which is based on transfer
function matrix of stacked lifted reformulations, is
worthy of further exploration.

It is worth noting that (5) is a group of indepen-
dent linear equations and can be easily solved. To
illustrate it, let us consider the following example.



Example 1 Consider a periodic system of period
θ = 2 described by (1) with (Fadali and Gummu-
luri, 2001)

A0 =

⎡
⎢⎢⎣

0.25 0.25 0.1 −0.1
0.5 0.1 0.1 0.5
0.5 −0.2 0.2 0.25
0.1 0 0.25 0.1

⎤
⎥⎥⎦ , B0 =

⎡
⎢⎢⎣

0.5
0.1
0.1
0.25

⎤
⎥⎥⎦

A1 =

⎡
⎢⎢⎣

0.1 0.2 0.1 −0.1
−0.1 0.5 0 0.5
0.5 0.5 0.1 0.25
0 0.1 0.1 0.25

⎤
⎥⎥⎦ , B1 =

⎡
⎢⎢⎣

0.1
0.5
0.1
0.5

⎤
⎥⎥⎦

Ed
0 =

⎡
⎢⎢⎣

1.3
1.8
1.6
0.32

⎤
⎥⎥⎦ , Ef

0 =

⎡
⎢⎢⎣

0.1
−1
0.2
0.1

⎤
⎥⎥⎦ , Ed

1 =

⎡
⎢⎢⎣

3.2
2
−1
−2

⎤
⎥⎥⎦

Ef
1 =

⎡
⎢⎢⎣

0.1
−1
0.2
0.1

⎤
⎥⎥⎦ , C0 =

⎡
⎣ 0.25 0.1 0.2 0.1
−0.1 0.5 0.2 0.5
0.25 0.5 −0.1 0.1

⎤
⎦

C1 =

⎡
⎣ 0.1 0.25 0.1 −0.1

0.25 0.1 0.2 0.1
0.1 0.25 −0.2 0.5

⎤
⎦

F d
0 = O,F f

0 = O,F d
1 = O,F f

1 = O

Let s = 1. It is easily computed that

Ho,0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.25 0.1 0.2 0.1
−0.1 0.5 0.2 0.5
0.25 0.5 −0.1 0.1
0.19 0.03 0.03 0.13

0.2225 0.0325 0.1 0.085
0.1 0.09 0.12 0.115

⎤
⎥⎥⎥⎥⎥⎥⎦

Ho,1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.1 0.25 0.1 −0.1
0.25 0.1 0.2 0.1
0.1 0.25 −0.2 0.5

0.115 0.21 0.055 0.1
0.04 0.38 0.06 0.435

−0.075 0.26 0.025 0.225

⎤
⎥⎥⎥⎥⎥⎥⎦

Hd,0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0

0.708 0
0.857 0
0.42 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, Hd,1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0

0.6 0
−0.52 0
1.7 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Hf,0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0

−0.23 0
−0.025 0
−0.23 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,Hf,1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0

−0.025 0
−0.42 0
−0.485 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Hu,0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0

0.06 0
0.18 0
0.18 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, Hu,1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0

0.145 0
0.51 0
0.315 0

⎤
⎥⎥⎥⎥⎥⎥⎦
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Fig. 1. The fault signal
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Fig. 2. The residual signal generated by residual
generator (8)

To decouple the residual from the disturbances,
solve v0

[
Ho,0 Hd,0

]
= 0, v0Hf,0 �= 0 for v0 and

v1

[
Ho,1 Hd,1

]
= 0, v1Hf,1 �= 0 for v1. It yields

v0 =
[−0.0631 −0.1348 0.0314

0.2316 −0.5703 0.7733
]

v1 =
[
0.3535 0.2589 0.1962

−0.8290 −0.1421 0.2491
]

(7)

As a result, the residual generator is

r(k) = v0

([
y(k − 1)

y(k)

]
− Hu,0

[
u(k − 1)

u(k)

])
if k = 2j + 1,

r(k) = v1

([
y(k − 1)

y(k)

]
− Hu,1

[
u(k − 1)

u(k)

])
if k = 2j + 2 (8)

In the simulation, it is assumed that the control
input is step signal (step time at 0) of amplitude
1, the disturbance d(k) = sin(0.01πk), the fault
appears at the 40th discrete time as shown in
Fig.1. The residual signal is shown in Fig.2. It is
seen that the residual signal r is not influenced by
u, d and changes only if f �= 0.



3. PERIODIC OBSERVER BASED FULL
DECOUPLING RESIDUAL GENERATOR

In this section, we present one approach to design
periodic observer based full decoupling residual
generators for periodic system (1).

To the aim of fault detection, an observer based
residual generator is constructed as

z(k + 1) = Gkz(k) + Hku(k) + Lky(k)
r(k) = Wkz(k) + Qku(k) + Vky(k) (9)

with z ∈ Rs. The goal is to design the θ-periodic
matrices Gk,Hk, Lk,Wk, Qk and Vk, so that the
conditions (i)-(ii) are fulfilled. In the fault-free
case, the dynamics of residual generator (9) is
governed by

e(k + 1) = Gke(k) + (Hk − Tk+1Bk + LkDk)u(k)
+ (GkTk + LkCk − Tk+1Ak)x(k)

+ (LkF d
k − Tk+1E

d
k)d(k)

r(k) = Wke(k) + (WkTk + VkCk)x(k)

+ (Qk + VkDk)u(k) + VkF d
k d(k) (10)

where e(k) = z(k) − Tkx(k). If the equations

Tk+1Ak − GkTk = LkCk (11)
WkTk + VkCk = 0 (12)

Hk = Tk+1Bk − LkDk (13)
Qk = −VkDk (14)

hold for any k = 0, 1, · · · , θ − 1, then the residual
dynamics (10) reduces to

e(k + 1) = Gke(k) + (LkF d
k − Tk+1E

d
k)d(k)

r(k) = Wke(k) + VkF d
k d(k) (15)

and meets the basic requirement that ∀u,

lim
k→∞

r(k) = 0, if d = 0, f = 0 (16)

as long as the stability of (15) is guaranteed.

Equations (11)-(14) are an extension of the well-
known Luenberger condition in periodic systems.
If matrices Gk, Lk, Tk,Wk, Vk satisfying (11)-(12)
are found, then Hk, Qk follow readily from (13)-
(14). However, it is not easy to solve difference
equation (11). Inspired by the fact that in the LTI
case there is a one to one relationship between
observer based and parity relation based residual
generators (Ding et al., 1998), the question now is
whether we can construct a periodic observer from
a periodic parity vector. The answer is positive, as
shown by theorem 1.

Theorem 1 Assume that

vk =
[
vk,0 vk,1 · · · vk,s

]
, k = 0, 1, · · · , θ − 1

satisfy vkHo,k = 0. Then

Gk =

⎡
⎢⎢⎢⎢⎣

0 · · · 0 gk,1

1
. . .

... gk,2

...
. . . 0

...
0 · · · 1 gk,s

⎤
⎥⎥⎥⎥⎦ (17)

Lk =−

⎡
⎢⎢⎢⎣

vk,0

vk−1,1

...
vk−s+1,s−1

⎤
⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎣

gk,1

gk,2

...
gk,s

⎤
⎥⎥⎥⎦ vk−s,s

Tk =

⎡
⎢⎢⎢⎣

vk−1,1 · · · vk−1,s−1 vk−1,s

vk−2,2 · · · vk−2,s 0
...

...
...

vk−s,s · · · 0 0

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

Ck

Ck+1Ak

...
Ck+s−1Ak+s−2 · · ·Ak

⎤
⎥⎥⎥⎦

Wk =
[
0 0 · · · 0 −1

]
Vk = vk−s,s

solve equations (11)-(12).

Proof: To prove equation (11), note that

vkHo,k = 0 ⇔

[
vk,0 vk,1 · · · vk,s

]
⎡
⎢⎢⎢⎣

Ck

Ck+1Ak

...
Ck+sAk+s−1 · · ·Ak+1Ak

⎤
⎥⎥⎥⎦ = 0

The first row of Tk+1Ak − GkTk is thus

[
vk,1 · · · vk,s

]
⎡
⎢⎣

Ck+1

...
Ck+sAk+s−1 · · ·Ak+1

⎤
⎥⎦Ak

− gk,1vk−s,sCk = −vk,0Ck − gk,1vk−s,sCk

which is equal to the first row of LkCk. The (j+1)-
th (j = 1, · · · , s − 1) row of Tk+1Ak − GkTk is[

vk−j,j+1 · · · vk−j,s

]

×

⎡
⎢⎣

Ck+1

...
Ck+s−jAk+s−j−1 · · ·Ak+1

⎤
⎥⎦ Ak

− [
vk−j,j vk−j,j+1 · · · vk−j,s

]

×

⎡
⎢⎢⎢⎣

Ck

Ck+1Ak

...
Ck+s−jAk+s−j−1 · · ·Ak

⎤
⎥⎥⎥⎦

− gk,j+1vk−s,sCk

= −vk−j,jCk − gk,j+1vk−s,sCk

which is equal to the (j + 1)-th row of LkCk.
Equation (11) is proven. Since

WkTk + VkCk = −vk−s,sCk + vk−s,sCk = 0,

equation (12) holds. �
Theorem 1 points out that, given a periodic vary-
ing vector belonging to the parity space, a periodic
observer based residual generator satisfying (11)-
(12) and thus (16) can be found.



Note that gk =
[
gk,1 · · · gk,s

]′, k = 0, 1, · · · , θ −
1, appearing in matrices Gk, Lk are free design
parameters and should be selected in such a way
that residual dynamics (15) is stable. It means
that the characteristic multipliers of system (15),
i.e. the eigenvalues of Gθ−1 · · ·G1G0, should be
located inside the unit circle. Indeed, residual
dynamics (15) can be equivalently written as

e(k + 1) = Ḡke(k) + (L̄kF d
k − Tk+1E

d
k)d(k) − gkr(k)

r(k) = Wke(k) + VkF d
k d(k)

with Ḡk, L̄k independent of gk as follows

Ḡk =

⎡
⎢⎢⎢⎢⎣

0 · · · 0 0

1
. . .

... 0
...

. . . 0
...

0 · · · 1 0

⎤
⎥⎥⎥⎥⎦ , L̄k = −

⎡
⎢⎢⎢⎣

vk,0

vk−1,1

...
vk−s+1,s−1

⎤
⎥⎥⎥⎦

gk can thus be interpreted as the gain vector of the
implicit feedback in the residual generator. This
freedom could be used to meet further specifica-
tions on the residual dynamics. A simple choice of
gk could be gk = 0, k = 0, · · · , θ − 1. In this case,
all characteristic multipliers are at the origin.

If besides (11)-(14), the following two equations

Tk+1E
d
k − LkF d

k = 0 (18)

VkF d
k = 0 (19)

are also satisfied, then the full decoupling can
be achieved by periodic observer based residual
generator (9) since now the residual dynamics is
described by

e(k + 1) = Gke(k), r(k) = Wke(k) (20)

The following theorem provides a way to solve
(11)-(14), (18), (19).

Theorem 2 Assume that

vk =
[
vk,0 vk,1 · · · vk,s

]
, k = 0, 1, · · · , θ − 1

satisfy (5). Then Gk, Lk, Tk,Wk, Vk given by (17)
solve (11), (12), (18), (19).

Proof: Because vkHd,k = 0, k = 0, · · · , θ − 1,
multiplying vk with each column of Hd,k yields

vk,sF
d
k+s = 0, (21)

vk,jF
d
k+j +

s∑
l=j+1

vk,lCk+lΦk+l,k+j+1E
d
k+j = 0,

j = 0, 1, · · · , s − 1 (22)

where

Φk2,k1 =
{

I, if k2 = k1

Ak2−1Ak2−2 · · ·Ak1 , if k2 > k1

Equation (19) follows directly from (21) since
Vk = vk−s,s. Equation (22) can be re-written as

vk−j,jF
d
k +

s∑
l=j+1

vk−j,lCk−j+lΦk−j+l,k+1E
d
k = 0

by substituting k by k − j. Thus the (j + 1)-th
(j = 0, 1, · · · , s − 1) row of Tk+1E

d
k − LkF d

k , i.e.[
vk−j,j+1 · · · vk−j,s

]

×

⎡
⎢⎢⎢⎣

Ck+1

Ck+2Ak+1

...
Ck+s−jAk+s−j−1 · · ·Ak+1

⎤
⎥⎥⎥⎦ Ed

k

+ vk−j,jF
d
k + gk,j+1vk−s,sF

d
k ,

is equal to 0. Equation (18) is proven. �
Theorem 2 shows that if the periodic parity vector
v0,v1, · · · , vθ−1 realises a full decoupling, so does
the periodic observer based residual generator
(9) with coefficients (17). Thus a periodic full
decoupling observer based residual generator can
be obtained from a periodic full decoupling parity
vector. It is interesting to note that

• the order of the periodic observer is equal to
the order of the parity relation,

• matrices Lk, Vk, Tk in periodic observer-based
residual generator (9) at each time are re-
lated to the periodic parity vector over one
period, which indicates the importance of cor-
rect information of period time θ.

In summary, the proposed procedure to design
a periodic observer-based full decoupling residual
generator is as follows:

• Set the value of s.
• Construct matrices Ho,i,Hd,i,Hf,i, i = 0, · · · ,

θ − 1 as (3).
• Solve (5) for vectors v0, · · · , vθ−1.
• Partition vi as vi =

[
vi,0 vi,1 · · · vi,s

]
with

vi,j ∈ R1×m, i = 0, · · · , θ − 1, j = 0, · · · , s.
• get matrices Gk, Lk, Tk,Wk, Vk according to

(17) with g0, · · · , gθ−1 guaranteeing the sta-
bility of residual dynamics.

• Compute Hk, Qk from (13), (14).

On the other side, if a periodic observer-based
residual generator (9) with Gk, Lk,Wk of the form

Gk =

⎡
⎢⎢⎢⎢⎣

0 · · · 0 gk,1

1
. . .

... gk,2

...
. . . 0

...
0 · · · 1 gk,s

⎤
⎥⎥⎥⎥⎦ , Lk =

⎡
⎢⎢⎢⎣

Lk,1

Lk,2

...
Lk,s

⎤
⎥⎥⎥⎦

Wk =
[
0 · · · 0 −1

]
is given, then the vector

vk =
[
Lk,1 + gk,1Vk Lk+1,2 + gk+1,2Vk+1

· · · Lk+s−1,s + gk+s−1,sVk+s−1 −Vk+s

]
(23)

with k = 0, 1, · · · , θ− 1 is a periodic parity vector
satisfying vkHo,k = 0. Furthermore, if the given
residual generator (9) is full decoupled from the
disturbances, then vector (23) satisfies (5) and
also realises a full decoupling.
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Fig. 3. The residual signal generated by residual
generator (24)

Example 2 Consider the same periodic system
as in example 1. From the periodic full decoupling
parity vector got in (7), a periodic observer-based
residual generator can be obtained as

z(k + 1) = Gkz(k) + Hku(k) + Lky(k)

r(k) = Wkz(k) + Qku(k) + Vky(k) (24)

G0 =−0.2, G1 = −0.3, H0 = 0.0504

H1 =−0.1142, W0 = −1, W1 = −1

L0 =
[−0.1027 0.1064 0.0184

]
L1 =

[−0.2840 −0.4300 0.0358
]

V0 =
[−0.8290 −0.1421 0.2491

]
, Q0 = 0

V1 =
[
0.2316 −0.5703 0.7733

]
, Q1 = 0

The transformation matrices are

T0 =
[−0.1308 −0.0294 −0.2191 −0.1290

]
T1 =

[−0.0421 0.1942 −0.2456 0.3064
]

It is worth noting that the periodic observer is
only of first order. By changing the value of
s, the order of the periodic observer could be
adjusted. Under the same simulation conditions
as in Example 1, the simulation result is shown
in Fig. 3. It is seen that the residual signal
is not influenced by u, d and the influence of
initial estimation error disappears after several
time points, which verify the theoretical results.

4. CONCLUSION

In this paper, approaches to design full decoupling
residual generators for periodic systems have been
presented. The periodic parity space approach
needs solving only a group of independent linear
algebraic equations. Then, by exploring the rela-
tionship between periodic parity vector and peri-
odic observer based residual generators, a periodic
observer based full decoupling residual generator
is obtained. A study of the FD system design
for periodic systems with parametric disturbances
and faults is being carried out.
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