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Abstract: Based on the previously proposed extended neural-fuzzy network, this paper 
presents a cooperation scheme of training data based learning and reinforcement learning 
for constructing sensor-based behaviour modules in robot navigation. In order to solve 
reinforcement learning problem, a reinforcement-based neural-fuzzy control system 
(RNFCS) is provided, which consists of a neural-fuzzy controller (NFC) and a neural-
fuzzy predictor (NFP). By estimating the “desired output”, reinforcement learning is 
treated from the point of view of training data based learning. Computer simulations are 
conducted to illustrate the effectiveness of this method. Copyright © 2005 IFAC 
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1.  INTRODUCTION 
 
The ultimate goal of mobile robot navigation 
researches is to make robots travelling with high 
autonomous ability in unknown environments by 
using on-line sensory information. Since Brooks 
(1986) proposed the behaviour-based control 
architecture, this approach has been broadly applied 
to robot navigation in unknown environments. 
Unlike the traditional architecture that requires 
internal representation of the environment, the 
behaviour-based scheme maps sensor information to 
control command directly. Fuzzy logic method is an 
effective solution of representing this mapping 
relationship as it does not require mathematical 
model and is able to realize reasoning on uncertain 
information. However, it is not easy to automatically 
adjust and improve the performance of a fuzzy 
system. Bringing the learning abilities of neural 
networks to fuzzy logic systems may be an effective  
approach  to  construct  fuzzy  systems  automatically. 
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Until now, many neural-fuzzy controllers have been 
developed to automatically design behaviour 
modules in robot navigation, such as see (Rusu, et al., 
2003), in which wall following and obstacle 
avoidance are considered firstly. 
 
According to whether sufficient and consistent 
training data are available, learning algorithms for 
behaviour modules can be divided into two kinds: 
training  data  based   learning   such as   supervised 
learning, and non-training data based learning which 
mainly means reinforcement learning. In general, 
training data based learning is an effective and fast 
learning algorithm to automatically construct neural-
fuzzy controllers for the behaviour modules such as 
wall following. But, when it is expensive to obtain 
sufficient and consistent training data, its capability 
will degrade greatly. Thus, reinforcement learning 
requiring no training data seems to be attractive when 
the learning of non-training data based behaviour 
modules is considered. However, reinforcement 
learning usually leads to a heavy learning process. In 
summary, it is intractable to construct navigation 
behaviour modules based on neural-fuzzy system by 
using either training data based learning or non-
training data based learning only. Motivated by these  
observations, selecting wall following and obstacle 
avoidance as navigation tasks, this paper respectively 
 



     

 
 
constructs wall following behaviour module by using 
training data based learning and obstacle avoidance 
behaviour module by using non-training data based 
learning. So the design of neural-fuzzy controller for 
behaviour modules can be realized on the 
cooperation scheme of training data based learning 
and reinforcement learning. The advantage of 
cooperation learning is to reduce learning load and 
make behaviour navigator more suitable in real-time 
applications. 
 
Based on our previously proposed extended neural-
fuzzy network, this paper presents a training data 
based learning algorithm for structure and parameter 
learning of the neural-fuzzy controller. For non-
training data based learning, enlightened by Sutton 
and Barto’s model (Barto, et al., 1983), this paper 
proposes a reinforcement-based neural-fuzzy control 
system (RNFCS), which integrates two neural-fuzzy 
adaptive elements performing a neural-fuzzy 
controller (NFC) and a neural-fuzzy predictor (NFP) 
respectively. Based on our knowledge, there are 
mainly two kinds of methods for the adjustment of 
parameters and structure in Sutton and Barto’s 
model-based reinforcement learning: one (Ye, et al., 
2003) is originated from Sutton and Barto’s model; 
the other (Lin and Lee, 1994) is based on gradient 
information. This paper is trying to solve 
reinforcement learning problem from another point 
of view. The main idea used is by employing the 
critic signal and the stochastic exploration method to 
estimate the “desired output”, reinforcement learning 
problem is changed into training data based learning 
problem.  

 
 

2. NEURAL-FUZZY CONTROLLER 
 
 
2.1 Mobile robot model and the fuzzy controller 
 
The model of the mobile robot used is a cylindrical 
platform driven by three off-centered omni-
directional wheels. Its radius is 0.315m, and is 
evenly equipped with 18 infrared sensors in a ring. 
Assuming to work in perfect mode, each sensor 
covers an angular view of 200 and gives a distance to 
the object in its field of view (0.1m~0.8m). To 
reduce input dimension, the sensors around the robot 
are divided into six groups ( 61 ~ SS ), each of which 
consists of three neighboring sensors, as depicted in 
Fig. 1. Each sensor group is considered as an input  
variable of the fuzzy controller, and the distance 
measured by each sensor group is defined as keeping  
only the smallest value. Considering the omni-
directional kinematic nature, the symmetry of the 
robot, the sensor arrangement, and appropriate 
number of rules, each input variable is assigned with 
three fuzzy sets, referring to near, medium and far, 
respectively. Here, the rotation of the robot is not 
considered, that means the robot coordinate system is 
consistent with the world coordinate all the time. 
Assuming the robot to move with a constant linear  
 

 
 
velocity, the control variable is defined as the angle 
from x-axis with 11 fuzzy sets. The initial Gaussian 
membership functions of the input and output 
variables are illustrated in Fig. 2.  
 

 
Fig. 1. Mobile robot and sensor arrangement 
 

  
Fig. 2.  Membership functions for the input and 

output variables 

In this paper, the following fuzzy if-then rules with 
certainty grades (Ishibuchi and Nakashima, 2001) are 
used: 

iR :    if 1x is 1iA  and …and if mx  is inA , 
then y  is iB  with iCF  

where  ),,( 1 nxxx ⋅⋅⋅= is a n -dimensional input vector; 
ijA ),1( nj ⋅⋅⋅= are antecedent linguistic values; y is a 

output value; iB is a consequent linguistic value; iCF  
( 10 ≤≤ iCF ) is the certainty grade of the fuzzy rule iR . 
 
 
2.2  Extended neural-fuzzy controller  
 
This subsection introduces the structure and the 
function of our previously proposed extended neural-
fuzzy controller (NFC) (Li, et al., 2004). Fig. 3 
shows the structure of the extended NFC. For 
convenience, the NFC is considered with two inputs  
and a single output, expressed by notes in layers 1 
and 6, respectively. Nodes in layers 2 and 5 are “term 
nodes” that act as input and output Gaussian 
membership functions, respectively. Layer 4 is a 
normalization layer, which has the same number of 
nodes as Layer 5. Nodes in layer 3 are “rule nodes”, 
each of which represents the antecedence of a fuzzy 
rule.  The link weights of layers 2 and 3 are set to 
unity. The widths and centers of output membership 
functions are viewed as the link weights of layers 5 
and 6 respectively.  The link weights ijW  of layer 4 
represent mapping relationships between 
antecedences and consequences of fuzzy rules, 
whose strengths express certainty grades ijCF  of 

fuzzy rules, which should be guaranteed by ∑
=

=
3

1
1

N

j
ijCF  

after learning process. The NFC can work in two 
manners: down-up and up-down mode, indicated by  
 



     

 
 
real-line and broken arrows, respectively in Fig. 3. 

 
Fig. 3. Extended neural-fuzzy controller 

Next, the functions of the nodes in each of the layers 
are described layer by layer. For convenience, n

iI  
and n

iO  are the input and output value of the i th 
node in layer n , respectively; and n

im and n
iσ  are the 

center and width of the Gaussian function of the i th 
node in layer n , respectively. 
A) Under down-up mode: 
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B) Under up-down mode ( n
iX  and n

iY  are defined as 
the same as n

iI  and n
iO  respectively): 
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Because of the added normalization layer, the benefit 
of the extended NFC is, when the NFC works under 
down-up mode, it can avoid imprecise outputs of 
Layer 4, and then compute the firing strengths of 
output term nodes more precisely. For realizing 
behaviour-based navigation tasks, the following 
sections will introduce the learning process of the 
extended NFC for setting up fuzzy rules with 
certainty grades and modifying parameters of 
membership functions, which is based on training 
data based hybrid learning or reinforcement learning.  
 
 

3. TRAINING DATA BASED LEARNING FOR 
THE NEURAL-FUZZY CONTROLLER 

 
 

3.1  Initial adjustment of parameters  
 

To   narrow   the   search   range   of   parameter  
 

 
 
optimization and find fuzzy rules with certainty 
grades more correctly, Kohonen’s self-organized 
feature mapping learning is used to adjust the centers 
of membership functions to make them covering only 
those regions where training data are present. 
Working under two-sided manner, training input and 
output data are fed into the NFC from both sides. For 
each pair of training data, the process of adjusting the 
centers im of membership functions of each input 
variable is described as follows: 

{ })()(min)(
1

tmtxmtx ikiclosest −=−
≤≤

                (10) 

[ ])()()()1( tmtxtmtm iii −+=+ α   if closesti mm =            (11)   
)()1( tmtm ii =+                        if closesti mm ≠            (12)   

where α is a learning rate; and k  is the number of 
input fuzzy sets. The determination of closetm  is 
accomplished via a winner-take-all manner. The 
similar process is applied simultaneously to adjust 
the centers of membership functions of the output 
variable. 
 
 
3.2 Setting up fuzzy rules with certainty grades 
 
This subsection proposes a new learning algorithm to 
find fuzzy rules with certainty grades of the NFC that 
is described as follows. 
Step1: Update the link weights. For each incoming 
training data, the input training data reach the outputs             

2
iO  of term nodes in layer 2 under down-up mode, 

and then get the firing strengths 3
iO  of rules nodes in 

layer 3. At the same time, the output training data get 
the inputs 4

jX  of nodes in layer 4.  Then the link 
weighs ijW (set to zero at the start) are updated as: 

)()()()1( 43 tXtOtWtW jiijij ×+=+              (13) 
Step2: Compute the certainty grades. After updating 

ijW  considering all the available training data, the 
certainty grades are computed as: 

∑=
=

3

1

N

j
ijijij WWCF                           (14) 

which guarantees the sum of certainty grades of 
fuzzy rules related with each rule node is unity. 
 
 
3.3 Parameter optimization  
 
After the fuzzy rules with certainty grades have been 
found, the whole structure of the NFC is established 
completely, the task of this subsection is to optimize  
the parameters of membership functions.  Here, the 
gradient descent learning is used. The error function 
is                           

2
~

)(
2
1 yyE −=                       (15) 

where  
~
y  is the desired output; and y  is the current 

output. Based on input training data, the NFC 
computes the current output under down-up mode. 
Then using the error between the current output and 
the output training data (the desired output), the 
gradient information is computed layer by layer by 
chain rule to adjust the parameters of membership  
 



     

 
 
functions. The updated values of the centers and  
widths of output membership functions are as 
follows: 
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Similarly, the updating of the centers and widths of 
input membership functions are by 
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where 1β , 2β , 1γ  and 2γ  are learning rates. 2/ imE ∂∂  
and 2/ iE σ∂∂  can be derived by chain rule.  
 
 

4. REINFORCEMENT LEARNING FOR THE 
NEURAL-FUZZY CONTROL SYSTEM 

 
 
4.1 Reinforcement-based neural-fuzzy control system 
 
Enlightened by the Sutton and Barto’s model, this 
paper proposes a reinforcement-based neural-fuzzy 
control system (RNFCS). The proposed RNFCS, as 
shown in Fig. 4, integrates two neural-fuzzy adaptive 
elements into a learning system: one element 
performing as the NFC and the other as the neural-
fuzzy predictor (NFP). The structure of the NFC is 
based on the extended NFC. The model of the NFP is 
a four-layer network, which shares the same layers 
1and 2 with the NFC, and has individual layers 3 and 
4, which are the hidden layer and the output layer 
with a single node respectively, as shown in Fig. 5.  
The functions of the nodes in layers 3 and 4 are 
described as follows. 
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where ijV  and iU  are link weights (set to small 
nonzero values at the start), other symbols are 
defined as the same as previously. 
 
Here, the working process of the RNFCS is 
described in brief as follows: at step t , the input 
vector )(tx supplied by the environment is fed 
simultaneously into the NFC and the NFP. Based on  

)(tx , the NFP produces a signal )1( +tp , which is the 
prediction of the external reinforcement signal )1( +tr  
but available at step t ; and the NFC gets an output 
variable )(ty . Then using )1( +tp  and )(ty , the actual 
output )(ty

∧
is chosen by the stochastic exploration 

method introduced in the next subsection.  Driven by 
)(ty

∧
, the system evolves to step 1+t  and gets )1( +tr  

by interacting with the environment. Finally, link 
weights of the NFP are updated by the internal 
reinforcement signal )1( +

∧
tr , which is the prediction  

 

 
 
error computed by )1( +tr  and )1( +tp . )1( +

∧
tr , )(ty  

 and )(ty
∧

are used for the adjustment of link weights 
and parameters of the NFC. The learning algorithms 
will presented in detail in Subsection 4.2 and 4.3.  
 

 
Fig. 4. Reinforcement-based neural-fuzzy control 

system 

 
Fig. 5. Neural-fuzzy predictor 
 
 
4.2 Learning algorithm of the neural-fuzzy predictor 
 
Single-step prediction. Our motivation of designing a 
RNFCS is for sensor-based obstacle avoidance in un-
known environments. The external reinforcement 
signal r  is defined as related with distance measure 
supplied by sensors. As long as there are obstacles in 
sensor field of view, r can be obtained at each step, 
which is only one step behind its corresponding 
action. So the reinforcement learning problem is 
simplified to a single-step prediction problem. 
 
In this paper, without using a normal two-valued 
number for r , which only means “a success” or “a 
failure”, the form of r  is defined as a real number, 

{ }1,0∈r , which represents a detailed and continuous 
degree of success or failure. r  is computed by  
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where mind  is the smallest distance measure among 
sensor groups; and 15.0  is a set threshold for safety.  
 
Learning algorithm of the NFP. The goal of the NFP 
learning is to adjust link weights of the NFP to 
minimize 

∧
r  at each step, which, based on the single-

step prediction, is described as   
                          prr −=

∧
                                    (22) 

Here, the gradient descent learning is used to update 
the link weights of the NFP. The error function is  
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According to the chain rule, the updated values of the 
link weights of the NFC are as follows: 
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where 1η  and 2η  are learning rates. 
 
Stochastic exploration method. When )(ty  is 
produced by the NFC, the conflict between the desire 
to use )(ty  and the desire to further explore the 
environment to improve the performance of the NFC 
has to be faced. This paper uses the stochastic 
exploration method (Lin and Lee, 1994) to overcome 
this problem. It is described as follows. 
Step 1: The range of stochastic exploration is 
determined by             

 )1(1
)( ++

= tApe
Ktσ                         (26) 

where K  and A  are search-range scaling parameters. 
Step 2: A Gaussian random variable )(ty

∧
 is chosen 

by exploring the )(tσ around the mean point )(ty . 
 

)(tσ  can be interpreted as the extent to which the 
output variable searches for a better action. )1( +tp  is 
the prediction of )1( +tr . When )1( +tp  is small, )(tσ  
will be large, which means to broaden the search 
range about the mean )(ty . This can provide a higher  
probability to choose a )(ty

∧
, which is far from )(ty , 

since )(ty  is regarded to be far from the best action 
possible for the current input vector. The similar 
analysis is true when )1( +tp  is large. By using the 
above method, the NFC explores actions possible, 
and then a better output will be rewarded and a worse 
one be punished by the learning algorithm of the 
NFC introduced in the next subsection.  

 
 

4.3 Learning algorithm of the neural-fuzzy controller 
 
The goal of the NFC learning is to adjust link 
weights and parameters of the NFC to maximize r  
at each step, which means to produce an optimal 
action for each input vector. Basically, the difference 
between training data based learning and 
reinforcement learning is: for each input vector, the 
former can get the instructive signal, which is 
described as the desired output; and the later has only 
the critic signal, which represents a reward or a 
penalty for the output action. If the “desired output” 
can be produced by employing the critic signal, then 
a reinforcement learning problem can be changed 
into a training data based learning problem. In this 
paper, the learning of the reinforcement-based NFC 
is considered and solved just based on this idea.  
 
Firstly, using the method proposed by Lin and Lin 
(1996), the desired output is estimated by    
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where ρ  is a real number, { }1,0∈ρ ; and )(tyd  is the 
estimated output. If )1()1( +>+ tptr , which means 

)(ty
∧

is better than )(ty , )(ty
∧

should be rewarded. So 
)(tyd  is moved closer )(ty

∧
. On the other side, )(tyd  is 

moved further away from )(ty
∧

.When the desired 
output is produced, the reinforcement learning can be 
changed completely into a training data based 
learning. The whole process of the training data 
based hybrid learning in Section 3 can by applied to 
the learning of the reinforcement-based NFC at each 
step, in which )(

~
yy−  is replaced by )]()([ tytyd − . 

 
 

5. SIMULATION AND ANALYSIS 
 
Experiment 1: Wall following learning 
In order to obtain training data, the robot is firstly 
driven by a human operator to move from a, b, c and 
d start points respectively in a simulated indoor 
environment as shown in Fig. 6(a). The region 
between the two dotted circles represents the 
detectable range of sensors. The folded lines are the 
trajectories of the robot center. The information 
supplied by the training data represents that when the 
robot is close to the wall, it will go further away at 
next time step; on the contrary, move toward the wall.  
Parameters used for wall following learning are 
shown in Table 1. In learning, when any of the six  
input variables has no measure reading, the third 
fuzzy set is assumed to be fired with firing strength 1. 
The velocity of robot is set to 0.05m/step. Driven by 
the trained NFC, the resulting paths, which start from 
A, B, C and D respectively, are shown in Fig. 6(b). 
 

Table 1 Parameters used for wall following 
 
α =0.3 1η =0.1 2η =0.1 3η =0.05 4η =0.05
 

    
(a)                                           (b) 

Fig. 6. Training and testing for wall following 

Experiment 2: Obstacle avoidance learning 
The RNFCS is used for on-line obstacle avoidance in 
a simulated indoor environment that consists of walls 
and static obstacles, in which walls also are treated as 
obstacles, as shown in Fig. 7. At the start, )1( +tp , 

)(ty  and )(ty
∧

 are set to zero, and )(tσ set to unity. 
Parameters used for obstacle avoidance learning are 
shown in Table 2. Driven by the RNFCS, the robot  
 



     

 
 
begins to move from A and B, respectively. When 
the smallest distance between the robot and obstacles 
is lower than the given threshold, the robot is 
backtracked two steps and )1( +tp , )(ty , )(ty

∧
 and 

)(tσ  are set again with initial values. If there are no 
obstacles in sensor field of view, the robot goes 
forward one step along x-axis direction. When the 
robot deals with multiple obstacles, a trap may be 
encountered, such as around B. The reason is that the 
robot tends to keep away from all the obstacles. In 
principle, the robot is always able to get out of the 
trapped situation by using the stochastic exploration 
method; however, by adjusting the search-range 
scaling parameters, the search range can be 
broadened to speed up learning, and then increase the 
chance to get out of the trap. At the same time, it 
should be also noticed that a too large search range 
will degrade the learning in other situations. 
 

Table 2 Parameters used for obstacle avoidance 
 

8.01 =η  8.02 =η  1=K  1=A  1=ρ  
6.0=α  5.01 =β  5.02 =β  1.01 =γ  1.02 =γ

 

 
Fig. 7. On-line learning for obstacle avoidance 

Experiment 3: Combination navigation 
Fig. 8 shows the trajectory of the robot center driven 
by the combination of wall following and obstacle 
avoidance in a simulated indoor environment.  
 

 
Fig. 8. Combination navigation  

A and B are start positions, which are near to walls 
and there are not obstacles around them. So the robot 
begins to move under the control of the trained wall 
following navigation module. This paper does not 
consider complex coordination strategy for different 
behaviour modules. When the obstacles are near 
enough to the robot, the navigation control of the 
 

 
 
robot is changed under the on-line obstacle 
avoidance. 
 
 

6. CONCLUSION 
 
Based on our previously proposed extended NFC, 
this paper presents a cooperation scheme of training 
data based learning and non-training data based 
learning for the design of robot behaviour navigator. 
According to whether sufficient and consistent 
training data are available, wall following and 
obstacle avoidance are designed independently by 
using training data based hybrid learning and 
reinforcement learning respectively. Computer 
simulations show both the behaviour module 
constructed by off-line training data based learning 
and the behaviour module built by on-line 
reinforcement learning work well in unknown 
environments; while their incorporation lessens 
learning load of behaviour-based robot navigator and 
make it more suitable for applications in real-time 
environments. Future work will focus on the 
evaluation and improvement of the quality of robot 
navigation path achieved on the presented method. 
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