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1. INTRODUCTION

Finite-time stability [FTS] (sometimes also re-
ferred to as short-time stability) is a stability prop-
erty concerned with the quantitative behaviour of
the state of a system over a finite, a priori fixed,
time interval. In particular, a system is finite-time
stable with levels (α, β, T ), [FTS(α, β, T )], if for
all initial conditions with norm smaller than α,
the norm of the state remains smaller than β on
a time interval of length T . Compared with the
concept of Lyapunov stability (involved with the
qualitative behaviour of solution over an infinite
time interval), the FTS concept is obviously more
natural for many real systems, operating only
for a finite time interval and subject to specific
constraints on the state variables. It is worth
remarking that FTS and Lyapunov stability are
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completely independent concepts (neither one im-
plies the other).

The concept of FTS was first introduced in
(Kamenkov, 1953), where conditions were given
for nonlinear systems to be finite-time stable. A
very complete study of FTS analysis for nonlinear
systems appeared in (Weiss and Infante, 1965).
However, design results for FTS of nonlinear sys-
tems were not available until (Garrard, 1972).
Tractable LMI-based analysis and synthesis re-
sults for robust FTS of linear systems started ap-
pearing in the 1990’s (Dorato et al., 1997; Amato
et al., 2001) sparking renewed interest in FTS.

Meanwhile, significant developments in the field of
stabilization of nonlinear systems appeared in the
last two decades of the past century. In particular,
some of the most impressive achievements in non-
linear control theory during the 1990’s are essen-
tially related to the discovery that globally asymp-
totically stabilizing control laws for special classes
of nonlinear systems (having a suitable “triangu-
lar” or “interlaced” structure) can be obtained
by fully constructive, recursive techniques (“back-
stepping” and “forwarding”); such a breakthrough



showed that the generally intractable problem of
global asymptotic stabilization of nonlinear sys-
tems is easily solved if the system’s structure can
be exploited. A complete perspective on recursive
designs is given in (Kristić et al., 1995; Sepulchre
et al., 1997) and references therein.

The aim of this paper is to give constructive FTS
design results for nonlinear systems in “strict-
feedback” form (Kristić et al., 1995). First, it is
shown that any control law designed by standard
backstepping [BS] achieves some level of FTS.
Then, a synthesis result on FTS for nonlinear
systems appeared in (Garrard, 1972) is combined
with the idea of BS, providing a more effective
modified BS design for FTS. Finally, a corollary of
Garrard’s theorem is stated whose application can
further enhance the applicability of the modified
BS design. A simple academic example is used to
substantiate the theoretical results.

2. FTS IMPLICATIONS OF BACKSTEPPING

Consider the following system with state x ∈ R
n,

n ≥ 2, in strict-feedback form:

ẋi = fi(x1, . . . , xi) + gi(x1, . . . , xi)xi+1, (1a)

for i = 1, . . . , n − 1, and

ẋn = fn(x1, . . . , xn) + gn(x1, . . . , xn)u, (1b)

where each xi ∈ R, i = 1, . . . , n, and u ∈ R

is the external input. The overall state is x′ =
[x1 · · · xn], with x′ denoting x transposed. The
shorthand notations x′

i = [x1 · · · xi] will be used
throughout. Letting (with some abuse of notation)
fi(xi) := fi(x1, . . . , xi), gi(xi) := gi(x1, . . . , xi),
the following vector fields are defined:

fi(xi) :=




f1(x1) + g1(x1)x2

...
fi−1(xi−1) + gi−1(xi−1)xi

fi(xi)


 ,

and gi(xi) :=
[
0 · · · 0 gi(xi)

]′
, so that the sub-

system of (1) with state xi can be rewritten as

ẋi = fi(xi) + gi(xi)vi, (2)

with virtual control vi = xi+1 for i = 1, . . . , n −
1, and vn = u (the actual control input). For
simplicity, the functions fi(·) and gi(·) (as well
as the φi(·) appearing later) will be assumed to
be smooth (such an assumption can be weakened
to a sufficient regularity assumption).

For given β ≥ α > 0, T > 0, it is desired to
design a state feedback law u = h(x) such that
the closed loop system is finite-time stable with
respect to (α, β, T ) [FTS(α, β, T )], i.e. such that

‖x(0)‖ < α =⇒ ‖x(t)‖ < β, ∀t ∈ [0, T ),

where ‖v‖ is the euclidean norm of vector v. The
reals α, β and T will be referred to as the “FTS

levels”; when comparing two different control laws
achieving FTS(α1, β1, T1) and FTS(α2, β2, T2), re-
spectively, with β1 = β2, the first control law will
be considered better than the second if α1 ≥ α2,
T1 ≥ T2, and at least one inequality is strict.
In this sense, for a given β, the “best” possible
FTS levels are given by α = β and T = +∞
(corresponding to forward invariance of the set
{x : ‖x‖ ≤ β}). Notice that FTS with levels
(α, β,+∞) corresponds to practical stability.

To start with, it is shown that standard BS designs
automatically yield some level of FTS. Results in
BS designs are usually given by first defining a
stability property of interest, and then providing
a “BS lemma” which shows that if a smooth
virtual control law vi = φi(xi) achieving that
stability property for system (2) is known, then
it is possible to find a smooth virtual control law
vi+1 = φi+1(xi+1) achieving the same stability
property for system (2) with i replaced by i + 1.
Starting with i = 1 and recursively applying such
a lemma n−1 times, a virtual control law φn(xn)
(achieving the desired stability property) is found
which can be directly implemented since vn = u.

One interpretation of BS is to view it as a
constructive, recursive procedure to determine a
change of coordinates ϑi(·) such that in the new
coordinates zi = ϑi(xi) a control Lyapunov func-

tion [CLF] is simply given by ‖zi‖2
, the square

of the euclidean norm of zi. In particular, the zi

coordinates are given by z1 := x1, zi := xi −
φi−1(xi−1) for i = 2, . . . , n, and z′i = [z1 · · · zi].
Clearly, ϑi(·) is smooth and globally invertible
provided that the φi(·)’s are smooth and globally
defined. Moreover, ϑi(·) does not alter the trian-
gular structure of (2), which in the new coordi-
nates can be written as

żi = f̃i(zi) + g̃i(zi)vi. (3)

In standard BS, the goal is global asymptotic
stability [GAS] of the origin, and then the stability
property considered in the “BS lemma” is

z′if̃i(zi) + z′ig̃i(zi)φ̃i(zi) < 0,∀zi ∈ R
i; (4)

however, if the eventual goal is FTS, a weaker
property is needed, requiring (4) only for states
zi in a subset of R

i. In order to precisely state
such a property, the following sets are defined for
i = 1, . . . , n:

Sβ
i := {xi : 0 < ‖xi‖ ≤ β}, (5a)

S̃β
i := {zi : 0 < ‖zi‖ ≤ β}. (5b)

Let S̃β
i,0 := S̃β

i ∪ {0} and ∂S̃β
i,0 denote the bound-

ary of S̃β
i,0. Moreover, let φ̃i(zi) := φi(ϑ

−1
i (zi)).

Condition 1. System (3) satisfies the inequality:

z′if̃i(zi) + z′ig̃i(zi)φ̃i(zi) < 0,∀zi ∈ S̃β
i ,

under virtual control vi = φ̃i(zi). △



φ̃j+1(zj+1) := − 1

g̃j+1(zj+1)

[
f̃j+1(zj+1) + g̃j(zj)zj + γj+1zj+1

]
(6)

Notice that 1

2

d
dt

‖zi‖2
= z′i(f̃i(zi) + g̃i(zi)vi), so

that (in accordance with the above recalled inter-
pretation of BS) Condition 1 essentially requires

‖zi‖2
to be a CLF for (3). Under the standard

assumption that g̃j+1(zj+1) 6= 0, ∀zj+1 ∈ S̃β
j+1, a

BS lemma (whose proof closely follows the rea-
soning in (Kristić et al., 1995, Sec. 2.3.1)) for
Condition 1 can be stated as follows.

Lemma 2. If Condition 1 holds for i = j, 1 ≤ j <
n, then ∃φ̃j+1(zj+1) such that Condition 1 holds

for i = j + 1. One such φ̃j+1(zj+1) is given by (6)
with γj+1 ∈ R>0. △

Since BS makes ‖zi‖2
a CLF proving GAS on S̃β

i

for system (3) under vi = φ̃i(zi), and since the

border of S̃β
i coincides with a level set of such

a CLF, it follows that S̃β
i is a forward invariant

set; in turn, forward invariance of S̃β
i implies that

the BS control law is also a “best” FTS control
law for (3) for any i = 1, . . . , n, since it achieves
FTS(β, β,+∞). Unfortunately, this very strong
result does not automatically hold in the original
xi coordinates where the problem was formulated,
since in general due to the change of coordinates
the forward invariance of S̃β

i will not imply the

forward invariance of Sβ
i . Anyway, some level of

FTS is achieved for free by the BS control law, as
shown in the following proposition.

Theorem 3. If Condition 1 holds and ‖ϑi(0)‖ <
β, then (2) under virtual control vi = φi(xi) is
FTS(ᾱ, β̄, T ), ∀T > 0, ∀(ᾱ, β̄) satisfying

0 < ᾱ ≤ min
‖zi‖=β

‖xi‖ ≤ max
‖zi‖=β

‖xi‖ ≤ β̄, (7)

where zi = ϑi(xi). △

Proof: Since ∂S̃β
i,0 is compact and ϑ

−1
i (·) is

continuous, then also ϑ
−1
i (∂S̃β

i,0) is compact. By

Weierstrass theorem, compactness of ϑ
−1
i (∂S̃β

i,0)
and continuity of the norm function imply that
both max‖zi‖=β ‖xi‖ and min‖zi‖=β ‖xi‖ ≥ 0 exist
and are finite.

The existence of max‖zi‖=β ‖xi‖ clearly implies

the existence of β̄ > 0 such that ϑ
−1
i (S̃β

i,0) ⊆ S β̄
i .

In order to show that min‖zi‖=β ‖xi‖ > 0, so
that ᾱ > 0 can be chosen, notice that since
‖ϑi(0)‖ < β, the point ϑi(0) is an interior point

of S̃β
i,0, and then, by continuity of ϑi(·), 0 is an

interior point of ϑ
−1
i (S̃β

i,0); this, in turn, implies

that the minimum distance of 0 from ϑ
−1
i (∂S̃β

i,0)
is strictly positive, i.e. min‖zi‖=β ‖xi‖ > 0.

As a consequence of the above reasoning, two
positive scalars ᾱ and β̄ have been determined

such that Sᾱ
i ⊆ ϑ

−1
i (S̃β

i,0) ⊆ S β̄
i . The proof

is completed by considering that, since Sᾱ
i is

contained in the forward invariant set ϑ
−1
i (S̃β

i,0),
no motion starting from Sᾱ

i can leave the set

ϑ
−1
i (S̃β

i,0), and since this set is contained in S β̄
i ,

the considered system is FTS(α, β, T ), for any
T > 0. �

About the hypothesis that ‖ϑi(0)‖ < β, it is
remarked that usually in applications 0 is an
equilibrium of (1) and ϑi(0) = 0.

3. A BACKSTEPPING LEMMA FOR FTS

Theorem 3 shows that the deterioration in the
original xi coordinates of the nice property en-
joyed by the BS control law in the zi coordinates
is due to the deformation of the set z under the
coordinate transformation (an example of such
deformation can be seen in Fig. 1, where the locus
‖z‖ = 9 in the is shown in the x coordinates as
a solid line). Even when all the flexibility of BS
is exploited (e.g. avoiding cancellations or adding
compensating terms in order to limit such defor-
mations), the FTS levels achievable by the above
BS design are necessarily limited by two factors:
first, the conditions imposed in the BS design
above do not take into account that only a finite
interval of time is considered in FTS; second, such
conditions are required to hold even inside S̃α

i .
Clearly, both factors are due to the fact that the
above BS design is focused on GAS, and achieves
FTS only as a byproduct. The second factor can
be particularly detrimental considering that the
above BS control law pushes the state towards
the attractive manifolds zi = 0 (whose shapes are
determined by the virtual control functions, and
eventually by the dynamics that the virtual con-
trols cancel, maybe unnecessarily), which can re-
quire certain states (acting as virtual controls) to
become quite large in order to control some other
states: clearly, if such phenomena take place inside
S̃α

i (i.e. in a region inside which FTS does not
impose any constraint), the resulting deterioration
appears to be quite unnecessary. In order to relax
the shortcomings above, a modified BS algorithm
is proposed, exploiting a result in (Garrard, 1972)
and recalled next.

Theorem 4. [Garrard] System ẋ = f(x, t) + Bu
with state feedback u = h(x) is FTS(α, β, T ) if

x′ (f(x, t) + Bh(x)) − δ ‖x‖2 ≤ 0, ∀x ∈ R,

where δ := 1

T
ln

(
β
α

)
, R := {x : α ≤ ‖x‖ ≤ β}. △



φ̃j+1(zj+1) := − 1

g̃j+1(zj+1)

[
f̃j+1(zj+1) + g̃j(zj)zj + γj+1(zj+1)z

′
j

(
f̃j(zj) + g̃j(zj)φ̃j(zj)

)]
(8)

For general nonlinear systems, the application of
Garrard’s result, in order to design the control law
u, is far from trivial. However, at least for systems
in strict-feedback form, a synergic use of BS and
Garrard’s result allows to systematically design
control laws achieving FTS, possibly with better
FTS levels than those obtained in Section 2. The
key idea consists in noticing that Garrard’s result
is based on bounding the derivative of a function

of the form ln
(

‖x‖2

α2

)
, which, apart from the

logarithm, is a quadratic function, like the CLFs
obtained by BS. In order to simplify subsequent
statements, in analogy to (5) the following sets are
defined for i = 1, . . . , n:

Rα,β
i := {xi : α ≤ ‖xi‖ ≤ β}, (9a)

R̃α,β
i := {zi : α ≤ ‖zi‖ ≤ β}. (9b)

Condition 5. System (3) satisfies the inequality:

z′if̃i(zi)+ z′ig̃i(zi)φ̃i(zi)− δ ‖zi‖2
< 0,∀zi ∈ R̃α,β

i ,

under virtual control vi = φ̃i(zi). △

In order to compactly state the subsequent
Lemma 7, the following class of functions Γε is
defined for ε ∈ R>0. A function γ(·) belongs to Γε

if it is smooth, γ(·) : R → [0, 1], and ∃ε̄ ∈ (0, ε):

γ(s) =

{
0 if |s| ≤ ε̄/2,

1 if |s| ≥ ε̄.

As a consequence of the strict inequality in Con-
dition 5, it is possible to choose ε ∈ R>0 such that
the following property holds.

Condition 6. The inequality in Condition 5 is

satisfied ∀zi ∈ R̃α,β

i , where α :=
√

α2 − ε2. △

Under the standard assumption that g̃j+1(zj+1) 6=
0, ∀zj+1 ∈ R̃α,β

j+1, a BS lemma for Condition 5 can
be stated as follows.

Lemma 7. If Condition 5 holds for i = j, 1 ≤ j <
n, then ∃φ̃j+1(zj+1) such that Condition 5 holds

for i = j + 1. One such φ̃j+1(zj+1) is given by (8)
with γj+1(·) ∈ Γε, and ε such that Condition 6
holds. △

Proof: It is enough to show that the virtual
control function (8) implies Condition 5 for i = j+

1. Let ∆i := z′if̃i(zi)+z′ig̃i(zi)φ̃i(zi). Substituting
vj+1 = φj+1(xj+1) and writing the left hand side
of the inequality in Condition 5 for i = j+1 yields:

∆j+1 − δ ‖zj+1‖2
= (1 − γj+1(zj+1))∆j − δ ‖zj+1‖2

In order to show that ∆j+1 − δ ‖zj+1‖2
< 0,

∀zj+1 ∈ R̃α,β
j+1, consider the following cases:

• If |zj+1| ≥ ε, then γj+1(zj+1) = 1, so that

∆j+1 − δ ‖zj+1‖2
= −δ ‖zj+1‖2

< 0

since zj+1 ∈ R̃α,β
j+1 implies ‖zj+1‖ 6= 0;

• If |zj+1| < ε, then ‖zj‖ ≥ α since

‖zj‖2
= ‖zj+1‖2 − z2

j+1

≥ α2 − z2
j+1

≥ α2 − ε2 =: α2

and then zj ∈ R̃α,β

j , as ‖zj‖ ≤ ‖zj+1‖ ≤ β. Since
ε has been chosen so that Property 6 is satisfied,

∆j − δ ‖zj‖2
< 0, ∀zj ∈ R̃α,β

j . Since γj+1(·) ∈ Γε,
then also (1 − γj+1(zj+1)) ∈ [0, 1], and (1 −
γj+1(zj+1))∆j − δ ‖zj‖2

< 0. As a consequence,
taking into account that ‖zj‖ ≤ ‖zj+1‖, so that

∆j+1−δ ‖zj+1‖2 ≤ ∆j+1−δ ‖zj‖2
, it follows that

∆j+1 − δ ‖zj+1‖2
< 0. �

As before (see the comments after Lemma 2),

by Theorem 4 if vi = φ̃i(zi) were the actual
control for (3), then Condition 5 would im-
ply FTS(α, β, T ) in the zi coordinates; however,
clearly FTS(α, β, T ) would not automatically hold
in the original xi coordinates where the problem
was formulated. The FTS levels achieved by the
proposed BS control law can be quantified as
shown in the following theorem.

Theorem 8. If Condition 5 holds and ‖ϑi(0)‖ <
α, then (2) under virtual control vi = φi(xi) is
FTS(ᾱ, β̄, T ), for the same T , ∀(ᾱ, β̄) satisfying

0 < ᾱ ≤ min
‖zi‖=α

‖xi‖ ≤ max
‖zi‖=β

‖xi‖ ≤ β̄, (10)

where zi = ϑi(xi). △

Proof: Consider the same notations of the proof
of Theorem 3. FTS(α, β, T ) of (3) under the
considered virtual control implies that, under
the same control, motions of (2) starting inside

ϑ
−1
i (S̃α

i,0) never leave ϑ
−1
i (S̃β

i,0) on time intervals
shorter than T . By reasonings wholly similar to
those used in the proof of Theorem 3, the proof
is then completed by showing that ϑ

−1
i (∂R̃α,β

i )

is the union of the compact sets ϑ
−1
i (∂S̃α

i,0) and

ϑ
−1
i (∂S̃β

i,0) (so that, by Weierstrass theorem, the
required minimum and maximum exist and are fi-
nite), and that the hypothesis ‖ϑi(0)‖ < α implies

that 0 is an interior point of ϑ
−1
i (S̃α

i,0) (so that the
required minimum is strictly greater than zero).�

About the hypothesis that ‖ϑi(0)‖ < α, it is
remarked that when FTS is the goal (instead



of GAS on S̃β
i ), the presence of a region S̃α

i,0

where no specific requirement is imposed makes it
simpler to guarantee even the stronger condition
ϑi(0) = 0, even if 0 is not an equilibrium of (1).

Though the deterioration of the FTS levels in
the original xi coordinates with respect to the
FTS levels guaranteed by the BS control law in
the zi coordinates inevitably affects the result in
Theorem 8, the advantages offered by Theorem 8
with respect to Theorem 3 are essentially due to a
larger flexibility in the choice of the virtual control
functions: in fact, virtual control laws satisfying
Condition 1 also satisfy Condition 5 for any choice
of α ∈ (0, β) and T > 0, but the converse is
not necessarily true. Such greater flexibility is
obtained by explicitly accounting for the interest
in a finite interval of time and by avoiding to
impose constraint on the virtual control for states
inside S̃α

i (compare with the comments following
Theorem 3). A subject of current research is how
the enhanced flexibility due to the use of Con-
dition 5 should be exploited in order to design
a control law achieving the “best possible” FTS
levels in the xi coordinates. Clearly, the deforma-
tions involved in the change of coordinates are null
when the change of coordinates is the identity, and
then intuition would suggest that at any step the
virtual control law should be chosen in such a way
to introduce as little deformation as possible (i.e.
to be as close as possible to 0); however, there is
no formal proof that such a step-by-step “opti-
mization” actually leads to the “flattest” possible
transformation as yet.

As remarked in (Kristić et al., 1995), the full
exploitation of BS is achieved when unnecessary
cancellations of useful nonlinearities are avoided.
Along the same lines, the enhanced flexibility due
to the use of Theorem 5 can be exploited by using
the following corollary of Theorem 4.

Corollary 9. System ẋ = f(x, t) + Bu under the

state feedback u = h(x) is FTS(α, β, T ) if ∃(ᾰ, β̆)

such that α ≤ ᾰ < β̆ ≤ β and

x′ (f(x, t) + Bh(x)) − δ̆ ‖x‖2 ≤ 0, ∀x ∈ R̆,

with δ̆ := 1

T
ln

(
β̆
ᾰ

)
, R̆ := {x : ᾰ ≤ ‖x‖ ≤ β̆}. △

Proof: by the very definition of FTS, any system
which is FTS(ᾰ, β̆, T ) will also be FTS(α, β, T ).
By Theorem 4, the above inequality is a sufficient
condition for FTS(ᾰ, β̆, T ) to hold. �

The interest in the above corollary could appear
quite limited, since in order to show FTS(α, β, T ),

it requires the stronger property of FTS(ᾰ, β̆, T ).
However, doing so relaxes the condition of The-
orem 4, requiring it to hold only on a smaller
set. Clearly, in view of Corollary 9, the result in
Theorem 8 can be strengthened to

0 < ᾱ < min
‖zi‖=ᾰ

‖xi‖ < max
‖zi‖=β̆

‖xi‖ < β̄.

4. EXAMPLES

The use of the finite-time stabilization results in
Sections 2 and 3 will be considered for system

ẋ1 = q(x1, x2) + x2, (11a)

ẋ2 = (2 − 0.5x2
1)x2 − x1 + u. (11b)

Since n = 2, once a virtual control law v1 = φ1(x1)
satisfying Condition 1 [Condition 5] is available,
a single application of Lemma 2 [Lemma 7] yields
a change of variables z1 = x1, z2 = x2 − φ1(x1),
which makes straightforward the choice of u =
φ2(x) making (11) FTS(β, β,+∞) [FTS(α, β, T )]
in the z coordinates; moreover, if φ1(·) ≡ 0 then
x ≡ z and the same FTS levels are achieved in
the original coordinates, too.

Several choices for q(x1, x2) are considered to
highlight different issues. Case 1 (with q(·, ·) ≡ 0)
can be compared to (Garrard, 1972, III.B), which
considers the same system; Case 2 and Case 3
(with q(x1, x2) = 2x3

1) show the advantages (in
term of FTS levels achieved in the x coordinates)
of Lemma 7 vs. Lemma 2; Case 4 (with q(x1, x2)
non-smooth and depending on x2) shows the
usefulness of Corollary 9, and the possibility to
deal with systems which are not in strict-feedback
form and/or non-smooth.

In order to show the fact that (6) and (8) are only
possible choices, and that usually the flexibility of
backstepping is better exploited by direct inspec-
tion of Condition 1 and Condition 5, the control
laws in the examples are possibly derived by the
latter approach, without using (6) and (8).

Case 1 [Van der Pol’s oscillator]. When
q(x1, x2) ≡ 0, it was shown in (Garrard, 1972)
that u = γx2, γ ∈ [−2,−1.39] makes (11)
FTS(1, 2, 2) (but not asymptotically stable). Since
Condition 5 for i = 1 reduces to

x1φ1(x1) − δx2
1 < 0, ∀x1 : α ≤ |x1| ≤ β,

the choice φ1(·) ≡ 0 is feasible for any δ > 0, i.e.
for any α ∈ (0, β) (possibly arbitrarily close to β),
and for any (possibly arbitrarily large) T ∈ (0,∞);
moreover, it yields x = z. Lemma 7 implies the
existence of a φ2(·) ensuring Condition 5 for i = 2,
i.e. FTS(α, β, T ) for (11). Without resorting to
(8), the choice

u = φ2(x1, x2) = −(2 − 0.5x2
1)x2 (12)

is immediately suggested by inspection of the
inequality in Condition 5 for i = 2:

x1x2 + x2[(2 − 0.5x2
1)x2 − x1 + u] − δ ‖x‖2

< 0.

which clearly holds for all x with 0 < α ≤ ‖x‖ ≤ β
when the control law (12) is used.



Case 2 [Standard Backstepping]. Consider
q(x1, x2) = 2/(1 + 5x2

1), and the objective of
achieving FTS(α, 5, 10) with α as close as possi-
ble to β = 5. Choosing the virtual control law
φ1(x1) = −q(x1, x2) − γ1x1, with γ1 ∈ R>0,
Condition 1 for i = 1 is satisfied, and such a choice
results in z2 = x2 +2/(1+5x2

1)+γ1x1. The actual
control obtained applying (6) with γ2 ∈ R>0 is:

u =−[x2(2 − 0.5x2
1 − 10x1/(1 + 5x2

1)
2 + γ1 + γ2) +

(2/(1 + 5x2
1))(γ1 + γ2) + γ1γ2x1]

The above controller makes (11) FTS(β,β,∞), for
any choice of β, in the z coordinates; however,
in the original x coordinates, the FTS levels
deteriorate. For γ1 = 0.1, according to (7) the
level curve ‖z‖ = 9 shows that the FTS levels
(1, 5,∞) are achieved (Fig. 1).

Case 3 [Backstepping lemma for FTS]. Con-
sider the same q(x1, x2) and objective of Case 2.
For the given choice of FTS levels, the virtual
control φ1(·) ≡ 0 satisfies Condition 5 for i = 1
and yields z2 = x2. By the same reasoning in
Case 1, the control law (12) can be shown to
achieve the desired FTS levels (4, 5, T ) in the x
coordinates (coinciding with the z coordinates).
The comparison with Case 2 shows that the back-
stepping design for FTS, being tailored to exploit
the finite time horizon and the state limitations
of interest in FTS, can deliver better controllers
(in the sense specified in Section 2) than standard
backstepping.

Case 4 [A non-strict feedback system]. Let
q(x1, x2) := x2

2ϑ(x1), where

ϑ(x1) :=

{
cos2

(π

2

x1

A

)
if |x1| ≤ A,

0 otherwise.

The design objective is to achieve a FTS(1/2, 2, 1)
closed loop system. Notice that system (11) is not
in the strict-feedback form of (1), due to the term
x2

2 in (11a); moreover, even if (11a) were replaced
by ẋ1 = ϑ(x1) + x2, trying to cancel the term
ϑ(x1) for 1/2 ≤ |x1| ≤ 2 could lead to a choice
φ1(·) 6≡ 0, introducing distortion in the change of
coordinates and deterioration of the FTS levels;
finally, ϑ(x1) is not even differentiable (hence, not
smooth) when |x1| = 1.

However, since ϑ(x1) = 0 on R1,2
1 , Condition 5

for i = 1 is satisfied on R1,2
1 for φ1(·) ≡ 0, which

yields x = z. Lemma 7 implies the existence of a
φ2(·) ensuring Condition 5 for i = 2, i.e. ensur-
ing that (11) is FTS(1, 2, 1), and then a fortiori
FTS(1/2, 2, 1) (as in the proof of Corollary 9).
Once again, the same reasoning used in Case 1
shows that (12) is a suitable choice for φ2(·).
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Fig. 1. FTS levels obtained by using standard and
modified backstepping.

5. CONCLUSIONS

A constructive recursive design of control laws
achieving finite-time stability for a class of nonlin-
ear systems having a triangular (feedback) struc-
ture has been proposed, exploiting a result in
(Garrard, 1972) and the idea of backstepping.

Extensions to the present work are being devel-
oped, considering discrete time systems, robust
finite-time stabilization, and recursive designs for
nonlinear systems having more general structures.
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