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1. INTRODUCTION

In many control applications, the process presents
highly nonlinear behavior, uncertainties, unknown
disturbances and bounded inputs. All these phe-
nomena are required to be considered for control
analysis and synthesis. The problem of designing
robust controllers for nonlinear systems with un-
certainties, which guarantee stability and trajec-
tory tracking, has received an increasing attention
lately. The presence of constrained inputs limits
the ability compensate the effects of unmodeled
dynamics and external disturbances. These effects
are reflected on the loss of stability, undesired os-
cillations and other adverse effects. There are sev-
eral results on linear control systems with input
constrains, (Hu and Lin, 2001). For nonlinear sys-
tems, control with constrained inputs is restricted
by requiring to know the system model. Some
algorithms allow the presence of uncertainties
satisfying the matching condition (El-Farra and
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Christofides, 2001). In (El-Farra and Christofides,
2001), a control law, based on the Sontag formula
(Lin and Sontag, 1991) with constrained inputs,
is developed and applied to a chemical reactor. To
relax the restriction of requiring knowledge of the
system model, identification via recurrent neural
networks arises as a potential solution (Hokimyan
et. al., 2001), (Sanchez, et. al.,2003).

Since the seminal paper (Narendra and
Parthasarathy, 1990), there has been a
continuously increasing interest in applying
neural networks to identification and control of
nonlinear systems. Lately, the use of recurrent
neural networks is being developed, which
allows more efficient modeling of the underlying
dynamical systems. Recent books, as (Rovithakis
and Christodoulou, 2000), have reviewed the
application of dynamic neural networks for
nonlinear system identification and control. In
(Rovithakis and Christodoulou, 2000), adaptive
identification and control by means of on-line
learning is analyzed; the stability of the closed-
loop system is established based on the Lyapunov



function method. In (Sanchez and Ricalde, 2003),
the problem of trajectory tracking, for nonlinear
systems in presence of constrained inputs and
uncertainties with application in chaos control
and synchronization, is considered.

In this paper, we extend our previous results
(Sanchez and Ricalde, 2003), to nonlinear systems
with less inputs than states. The output trajectory
tracking problem with constrained inputs is solved
with adaptive control scheme composed by a re-
current neural identifier, which is used to build an
on-line model for the unknown plant, and a con-
trol law to force the unknown plant to track the
output reference trajectory. An update law for the
recurrent high order neural network is proposed
via the Lyapunov methodology. A robust learning
law to avoid the parameter drift in the presence
of modelling error is also proposed. The control
law is synthesized using the Lyapunov method-
ology and a modification of the Sontag control
law for stabilizing systems with constrained inputs
and uncertain terms. This control law explicitly
depends on the input constraints. Boundedness
of the tracking error is proven and an estima-
tion of the closed loop stability region is given
in order to determine the available bounds of
the uncertainties and the desired tracking error.
The proposed scheme is validated for the output
trajectory tracking of a nonlinear oscillator.

2. RECURRENT HIGHER-ORDER NEURAL
NETWORKS

Artificial Recurrent Neural Networks are mostly
based on the Hopfield model (Hopfield, 1984).
These networks are considered as good candidates
for nonlinear systems applications which deal with
uncertainties and are attractive due to their easy
implementation, robustness and capacity to ad-
just their parameters on line.

In (Kosmatopoulos, et. al.), recurrent higher-
order neural networks (RHONN) are defined as
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where xi is the ith neuron state, L is the num-
ber of higher-order connections, {I1 , I2 , ..., IL}
is a collection of non-ordered subsets of
{1, 2, ...,m + n}, a

i > 0, w
ik

are the ad-
justable weights of the neural network, d
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are nonnegative integers, and y is a vector
defined by y =
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=

[S(x1), ..., S(xn), S(u1) , ..., S(um)]
>,with u =

[u1 , u2 , ..., um ]
> being the input to the neural net-

work, and S(·) a smooth sigmoid function formu-
lated by S(x) = 1

1+exp(−βx) + ε. For the sigmoid

function, β is a positive constant and ε is a small
positive real number. Hence, S(x) ∈ [ε, ε+ 1].
As can be seen, (1) allows the inclusion of higher-
order terms.
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rewritten as

ẋi = −aixi + w>
i
zi(x, u), i = 1, ..., n (2)

where wi = [wi,1 ...wi,L ]
>.

In this paper, we consider the following RHONN,

ẋi = −aixi+w>i zi(x)+wgizgi (x)ui , i = 1, ..., n
(3)

Reformulating (3) in matrix form yields

ẋ = Ax+Wz(x) +Wgzg (x)u (4)

where x ∈ <n, W ∈ <n×L,Wg ∈ <n×L, z(x) ∈
<L, zg(x) ∈ <L×p, u ∈ <p, and A = −λI, λ > 0.

3. CONTROL PROBLEM FORMULATION.

We consider the nonlinear system

ẋp = f
p
(x

p
) + g

p
(x

p
)sat(u) (5)

with output y = h(xp) ∈ <, where xp ∈ <n, and
sat(u) ∈ < is the standard saturation nonlinearity.
The vector functions fp , gp are assumed to be
unknown, but with full state measurement. The
system (5) is modeled by a RHONN in order to
estimate the system dynamical model. The control
goal is to force (5) to track the reference system
given by

ẋr = fr(xr, ur), xr ∈ < (6)

4. PLANT IDENTIFICATION

Consider the unknown nonlinear plant

ẋp = Fp(xp , u) , fp(xp) + gp(xp)sat(u) (7)

where xp , fp ∈ <n, gp ∈ <n, u ∈ < .
Taking into account that fp is unknown, one can
model (7) by a recurrent neural network as in (4).
Hence we propose the following recurrent neural
model for the unknown plant

χ̇ = −λχ+Wz(xp) +wper +Wgz(xp)sat(u) (8)

where λ > 0, χ ∈ <n, u ∈ <; W ∈ <n×p,Wg ∈
<n×1 , z(x) ∈ <, xp is the state to identify, χ is the
neural network state, and u is the applied input to
the system.W,Wg are the neural network adapted
weights, z(xp), zg(xp) are sigmoid functions and
the term wper ∈ <n represents the modelling error
which is assumed to be bounded.



Assumption 1. For every wij ∈W, the system (8)
is bounded for every bounded state xp.

To derive an adaptation law, which minimizes
the identification error, we consider the case of
no modelling error. We assume that there exist
unknown but constant weights W ∗ such that
the plant is completely described by the neural
network

ẋp = −λxp +W ∗z(xp) +W ∗g zg(x)sat(u) (9)

where all the elements are as described earlier.

Now, we proceed to analyze the error between the
identifier and the plant

ei = χ− xp (10)

The identification error dynamics is given by

ėi = χ̇− ẋp

ėi =−λe+ W̃z(xp) + W̃gzg(xp)u (11)

where W̃ =W −W ∗, W̃g =Wg −W ∗g .

To perform the stability analysis of (11), we con-
sider the Lyapunov function candidate
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where γ, γg > 0. Differentiating (12) along the
solutions of (9) , we obtain

V̇ =−λkeik2 + eTi W̃z(xp) + eTi W̃gzg(xp)u(13)
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The asymptotic stability of the identification error
is achieved if we select the weight adaptation laws

tr

½ .
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Substituting the adaptation law in (13) gives

V̇ = −λkeik2 ≤ 0 (15)

which is semidefinite negative. We now apply the
Barbalat’s lemma (Khalil, 1996). Since V (t) >
0,∀ei,W̃ 6= 0 and V̇ (t) ≤ 0, V (t) is bounded.
Hence, keik is bounded on [0, T ], the maximal
interval of existence of the solution for any given
initial state. V (t) is nonincreasing and bounded
from below by zero, and converges as t → ∞.
From (15) ei and W̃ are bounded on [0, T ], the
maximal interval of existence of the solution for
any given initial state. This implies that T = ∞.
We conclude ei → 0 as t→∞. Then lim

t→∞W →
W∞ and lim

t→∞W̃g → W̃∞, where W∞ and W̃∞ are

constant values.

The assumption of no modelling error is seldom
satisfied. Hence, the adjusted weight parameters
could drift to infinity. To avoid the parameter
drift, the following robust learning law for the neu-
ral network weights is proposed as in (Rovithakis
and Christodoulou, 2000):

.

Ŵ =

½ −γeiz(xpj ) if |wi| < wm

−γeiz(xpj )− σγwi if |wi| ≥ wm
(16)

.

Ŵg =

½ −γgeiz(xpj )ui if |wi| < wgm

−γgeiz(xpj )ui − σγgwi if |wi| ≥ wgm

where σ is a positive constant and wm, wgm

are the upper bounds for the neural network
weights. The robust learning law does not af-
fect the stability of the identification error. For
a detailed demonstration, see (Rovithakis and
Christodoulou, 2000).

5. TRAJECTORY TRACKING ANALYSIS

Consider the nonlinear system with constrained
input (7), which we model by the neural network

χ̇=−λχ+Wz(xp) + wper +Wgzg(xp)sat(u)

y = h(χ) (17)

where we assume that the modeling error is
bounded. In the following, for simplicity, we will
use u instead of sat(u). We will design a robust
controller that satisfies |u| ≤ umax and guar-
antees boundedness of the tracking error between
the plant and the reference signal generated by

ẋref = fref (xref ), xref ∈ < (18)

The system (8) is converted in a partially linear
system by the change of coordinates
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where r is the relative degree of (7) , such that the
system (17) is converted to
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Let us consider the tracking error defined as

et := ξ1 − xref (20)

The time derivative of the tracking error is

ėt = ξ̇1 − ẋref = −λχ+Wz(xp) + wper (21)

+Wgz(xp)u− f
r
(x

r
, u

r
)

Now let us define eTt = [et1, et2, ..., etr]

et1 = ξ1 − xref

et2 = ξ̇1 − ẋref
... (22)

etr = ξr−11 − xr−1ref

From (19) and (22) , we obtain the tracking error
dynamic system

ėt1 = et2

ėt2 = et3
... (23)
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The tracking problem can be analyzed as a stabi-
lization problem for the error dynamics (24).

5.1 Tracking Error Stabilization

To perform the stability analysis for the system,
the following Lyapunov function is formulated:
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where P is a positive definite matrix which satis-
fies the Ricatti inequality

ATP + PA− PbbTP < 0

A =


0 1 0 · · · 0
0 0 1 · · · 0
...
...
...
. . .

...
0 0 0 · · · 1
0 0 0 · · · 0

 ∈ Rr×r, b =


0
0
...
1

 ∈ Rr

Its time derivative, along the trajectories of (24),
is

V̇ =−λkeik2 + eTi W̃z(xp) + eTi W̃gzg(xp)u(26)
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Replacing the learning law (14) in (26) we obtain

V̇ = −λkeik2+LfeV +LweV wper +LgeV u (27)

Furthermore, we assume that the uncertain term
(LwV )wper is bounded by above as

(LwV )wper ≤ |et|wb

In order to stabilize the tracking error dynamics,
let us consider the following modification of the
Sontag control law (El-Farra and Christofides,
2001),(Sanchez and Ricalde, 2003),

u = −12R−1(et, Ŵ )LgV
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where η, φ are adjustable parameters.

Replacing the control law (28) in (27) and taking
into account the bound for (LwV )wper, we obtain

V̇ ≤ −λkeik2 −
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It is easy to verify that when
¯̄
2bTPet

¯̄
> φ

χ−1 ,
the second term is strictly negative; hence, we
proceed to study the case when |e| ≤ φ

χ−1 . First,
we consider that the modelling error term is a
disturbance which satisfies a growth bound of the
form ¯̄̄

LweL
r−1
f h(x)

¯̄̄
≤ δ

¯̄
2bTPet
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+ µ

Then, we can obtain the following bound using an
analog procedure as in (El-Farra and Christofides,
2001),
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≤ β (φ) ∀ |et| ≤ φ
η−1



Substituting β (φ) in (29) we obtain

V̇ ≤−λkeik2 + β (φ) (30)

+
(LftV + wb |LweV |)

q
1 + (umaxLgV )

2·
1 +
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2

¸
Now, to determine the sign of the last two terms,
we consider two cases,

Case 1. LfV + ηwb |LweV | ≤ 0, substituting this
inequality in (30) yields

V̇ ≤−λ ¡keik2 + ketk2¢+ β (φ)

−
q
(LftV + ηwb |LweV |)2 + (umaxLgV )4·

1 +
q
1 + (umaxLgV )

2

¸ (31)

Case 2.0 < LfV + ηwb |et| ≤ umax |LgV |. For this
case, we consider the inequality

(LfV + ηwb |LweV |)2 ≤ (umaxLgV )2

Replacing this bound in (30) , we obtain

V̇ ≤−λ ¡keik2 + ketk2¢+ β (φ) (32)

+
(1− χ)wb |LweV |

q
1 + (umaxLgV )

2·
1 +

q
1 + (umaxLgV )

2

¸
where we select η > 1 such that the last term on
the right hand is strictly negative.

From (31) and (32) , we deduce that exists a class
K function α such that

V̇ ≤ −λ ¡keik2 + ketk2¢− α (|et|) + β (φ) (33)

Then, by an appropriate selection of φ we can
make β (φ) small enough such that β (φ) ≤
1
2α (|et|) in order to obtain

V̇ ≤ −λ ¡keik2 + ketk2¢− 1
2
α (|ei| , |et|) (34)

Therefore, whenever the inequality LfV +
ηwb |et| ≤ umax |LgV | holds, the trajectories of
(22) will approach an ultimate bound if

λ
¡keik2 + ketk2¢+ α (|ei| , |et|) > β (φ)

Then, the designer can choose the parameters φ
and η in order to obtain a suitable tracking error.

Since V̇ is a semidefinite negative function, by the
Barbalat’s lemma (Khalil, 1996) we have

−λ ¡keik2 + ketk2¢−α (|et|)+β (φ)→ 0 as t→∞
(35)

The left side of (35) is a class K function, then

ei → 0, et → 0, β (φ)→ 0

When ei → 0, from the weight adaptation law
14 we have ẇij → 0. Then lim

t→∞Ŵ → Ŵ∞,

lim
t→∞W̃ → W̃∞where Ŵ∞ and Ŵ∞ are constant

values.

Remark 1. Since the control law explicitly de-
pends of umax, inequality LfV + wb |et| ≤
umax |LgV | , it can be used to reduce the available
maximum input as et decreases in order to smooth
the applied control. Then, umax can be expressed
as

umax =

½
umax |et| if 0 ≤ |et| < e∗t
umax if |et| ≥ e∗t

(36)

where e∗t is an admissible tracking error value
which can be obtained via simulations.

Theorem. Consider the unknown nonlinear system
with constrained input (7), which is modeled by
the recurrent high order neural network (8), the
on-line learning law (14) and the control law
(28) with parameters defined in (27), then for
LftV + wb |LweV | ≤ umax |LgV | , the control law
(28) guarantees an ultimate bound of the tracking
error.

6. APPLICATION EXAMPLE

In order to demonstrate the applicability of
the proposed adaptive control scheme with con-
strained inputs, the following example is tested.
We consider a sinusoid reference tracking. The
unknown system to control is the Van Der Pol
one generated by

ẋ
p1 = xp2 (37)

ẋp2 =
¡
0.5− x2p1

¢
xp2 − xp1 + 0.5 cos(1.1t) + sat(u)

with yp = xp1 and xp(0) =
¡
1.5 0

¢
. We want

this system output to track the following refer-
ence signal xr = 1.5 + sin (t/4) for a maximum
input umax = 20. For simulations, the following
recurrent neural network is used:

χ̇=−λχ+Wz(xp) + bsat(u) (38)

y(χ) = χ1

with λ = 15 , b =
£
0 1

¤T
and the high order

sigmoid vector defined as z(xp) =£
tanh(xp1) tanh(xp2) tanh(xp1) tanh(xp2) (39)

tanh2(xp1) tanh
2(xp2) tanh

2(xp1) tanh
2(xp2)

tanh3(xp1) tanh
3(xp2)

¤



To avoid parameter drift, we use the robust adap-
tation law (16) with γ = 250, wmax = 100, σ = 50.
The coordinate change is set as

¡
ξ1 ξ2

¢
=

Ã
χ1 −λχ1 +

8X
i=1

w1izi (xp)

!
For the Lyapunov function we select c = 0.9.For
the control law, we select wb = 0.2, η = 2 and
φ = 0.02. Fig. 1 displays the time evolution for
the output of the plant and the neural network.
The control law is applied at t = 20 sec. We
modify the input bounds according to (36) with
e∗t = 0.15. As can be seen, the control law achieves
the desired tracking performance even in presence
of uncertainties due to the modelling error and
input constraints. The applied input is displayed
in Fig. 2.

Fig. 1. State evolution of the system output,
reference signal and neural network output.

7. CONCLUSIONS

An adaptive control structure based on a recu-
rrent neural network for output tracking of un-
known nonlinear systems with constrained inputs
was developed. This structure is composed of a
neural network identifier, which builds an online
model of the unknown plant, which is the base
to compute the time derivatives of the output,
and a control law for trajectory tracking with con-
strained inputs is developed using the Sontag law
and the Lyapunov methodology. Stability of the
identification and tracking error and optimality

Fig. 2. Applied input

analysis is developed via Lyapunov methodology.
The applicability of the proposed structure was
tested via simulations, by the output tracking of
the VanderPol forced oscillator.
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