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Abstract: The goal of this paper is to extend the state graph class concept of a time
Petri net to the fuzzy state graph class concept of a Fuzzy Time Petri net (FTPN). The
fuzzy state class graph is defined by focusing on: i) the fuzzy time domains associated
to the state classes; ii) the update of the fuzzy time intervals after the firing of a transi-
tion; iii) the computation of Possibility and Necessity measures of transition firing.
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1. INTRODUCTION

The technological evolution of these last years,
mainly in computer sciences and communication
networks, induced the development of distributed
systems in many areas of the society, and particularly
in the industrial area. These systems are complex
ones and their design requires formal description
models in order to check properties and to evaluate
performances. Important characteristics of the behav-
ior of distributed systems are parallelism, choice,
transmission, synchronization, resource sharing, etc.

Petri nets are a good model for representing the main
characteristics of distributed system and for making a
qualitative analysis of these aspects. However, in
many systems, some informations are ill-known
(conditions, time duration, etc.).

In relation to the temporal aspect, some extensions as
Time Petri Net (TPN) (Merlin and Farber 1976) and
Fuzzy Time Petri Net (FTPN) (Cardoso, 1998) have
been defined. A TPN associates to each transition a
firing interval, and in a FTPN this interval is a fuzzy
one. The dynamic behavior of a TPN can be repre-

sented by a state class graph (Berthomieu and Me-
nasche, 1983) which preserves the Linear Time Logic
properties. The goal of this paper is to extend the
state graph class concept of a TPN to the fuzzy state
graph class of a FTPN.

The paper is organized as follows: section 2 intro-
duces the basic models of our work (Petri nets and
possibility theory). In section 3 we define the fuzzy
state class graph and we present the results obtained
in the analysis of a real application (a data transfer
protocol) in section 4.

2. TEMPORAL ILL-KNOWN INFORMATION
AND PETRI NETS

2.1. Temporal ill-known information

Possibility theory can be used for the representation
and the management of imprecision and uncertainty
in temporal knowledge. It is the simplest theory to
manage incomplete information and it contrasts with
the usual probabilistic encoding of knowledge, which
must be numerical and relies on an additivity as-
sumption. Moreover, classical probability theory is



unable to model ignorance (and partial ignorance) in
a natural way (Dubois and Prade, 1989).

The available knowledge about a date a is repre-
sented by means of a possibility distribution m,(t). It
is a fuzzy number represented by a trapezoid A = [a,,
a,, a3, a4]. In the following, these two notations will
be indistinctly used to represent a date a: T,(T) or A
(the fuzzy set that delimits a). The greater T,(t), the
greater the possibility that a is equal to 1. In the time
interval [a;, a4] (called support), 0 < w, < 1. In the
time interval [a,, a;] (called core), T, = 1. Outside the
interval [a;, a4], T.(T) =0. We consider normalized
possibility distribution: 3 T, w,(t)=1. There are three
particular cases: a) triangular form, a, = a3; b) impre-
cise case, a; = a, and a3 = a4 ; C) precise case, a; = a,
= as = ay.

Given a possibility distribution 7,(t),(Dubois and
Prade, 1988 define the measures of possibility I1(B)
and necessity N(B) that the date a belongs to a crisp
set B of X:

H(B)zsug)ﬂu(x) and N(B) = inf (1-7,(x))=1- I1(B)

where B is the complement of B. If II(B)=0 it is im-
possible that a belongs to B; if [I(B)=1, it is possible,
but it depends on the value of N(B). If N(B)=1, it is
certain. These measures are related by II(B)= 1 —
N(B). So, if N(B) > 0 it implies that I1(B) =1 and if
I1(B) < 1 it implies that N(B) =0.

Given two fuzzy dates a and b the fuzzy subtraction
A © B is given by (Dubois and Prade, 1989):

[a; @y a3 a4] © [b; by b3 by] =[a;-bs ar-bs a3-b, as-b]
(D

The time instants possibly/necessarily before or after
a date a (represented by m,) are given by the fuzzy
sets in Table 1 and shown in Fig. 1 and Fig. 2:

Table 1 Fuzzy sets Possib/Nec before/after a date a

Possibly Necessarily
before a (-0 A] (o A
after a [A +o0) ] A +o0)
(-0 A] [A +o0)
T AN
(_ ] A +OO)

Flg 1. Possib/Nec before a Flg 2. Possib/Nec after a
Given two possibility distributions associated with
dates a and b, m,(t) and m,(t), (Dubois and Prade,
1989) defines the possibility II(a < b) and the neces-
sity N(a < b) that date a be before b date :

[(a <b) = sup (min(z, (x),7,(y))

(2)
N(a < b) =1-sup (min(z, (x),7, (y))

x>y

(3)

We can also write II(a < b) = max ([A +0©) N (-0 B])
and N(a < b) = max (JA +w©) N (-0 BJ).

2.2. Time Petri Nets

A Time Petri Net (Merlin and Farber 1976) is a triple
<N, Mo, 1°> where: PN =<P, T, Pre, Post> is a Petri
net, Mo is the initial marking, ’:T- (Q+u0)*
(Q+ U o). The function I°, the static temporal inter-
val, associates to each transition t; a time interval [o;,
Bi] that represents the set of possible firing dates
since the enabling time (o; is the lower bound, B; is
the upper bound).

So, beside the concept of enabled (by the marking),
there is the concept of fireable. An enabled transition
is fireable at least at the lower bound a; and at last at
the upper bound B;. Note that the date where the tran-
sition is fired is not specified. The case where o; = 0
and P;= oo corresponds to a classical Petri net.

Transition firing:
The firing of a transition ¢; in a TPN from a state S =
(M, I) at a date 6;, leads to a state S’ = (M’, 1)
where I' is such that (I is the dynamic time interval):
1. if t; is newly enabled (enabled by M’, but
not by M), I'(t)= 1°(ty);
2. for the transitions that are not enabled I’=0 ;
3.if tj remains enabled, I’(t)=[max (0, o, -6;), B;-6,].

As a transition t; of a TPN is fireable at an instant 6;
(during its firing interval). After t; firing, there is an
infinity of states with the same marking but with dif-
ferent time firing domain. The concept of state class
and the definition of a State Class Graph (SCG) were
introduced by Berthomieu and Menasche, 1983.

2.3. State Class Graph

A state class is a set of states with the same marking
and whose time firing domain is the union of the time
firing domain of its states. The TPN adopts the
strong semantics (if several transitions are fireable,
one of them must be fired before the upper bound of
the other ones). The parallelism is managed by infer-
leaving (transitions are fired sequentially, defining a
total order). In the following we present a simplified
way to construct a SCG using interval theory ( (Car-
doso and Valette, 2005) defines another graph of
classes using temporal constraints network).

Two important points in the construction of SCG are
the firing interval of a transition and the time domain
of transitions that remain enabled after the firing of t;.



The firing of a transition leads to a new state class,
whose time domain is composed by:

- the time interval of all transitions enabled at this
marking and

- the time constraints among couples of transitions
that remain enabled (the time memory since the pre-
vious class where both transitions were enabled).

In the graphical representation of a SCG (Fig. 3) a
node is associated with: i) a marking, ii) a time do-
main (the time interval and the time constraints). The
arc linking two state classes is labeled by the firing
interval of the transition that provokes this state
change.

a. Time constraints

Let U (t;) = [a;, ;] be the dynamic temporal interval
of t; in a class C; and let

[t — tilo=1(t) — 1°(t;) N [0,%0)
= [o 1 Bi, Bx— @i]o M [0,00)
(4)

be the temporal constraint in the initial class Cy. We
consider [ty — t].. < (-0, ). The temporal con-
straint between enabled transitions t; and t; at class
C;, >0, is given by:

[t — 6y = (P(6) — F()) N [t~

Jlm[ s )

(5

If [ti—t;]; is not empty for all ty, t; is fireable (it can ac-
tually be fired), elsewhere it cannot be fired from C;.

If [t — ti]i1 S P(ty) - P(t)) it means that the temporal
constraint depends only on the time intervals at the
class C;. In this case, this restriction is redundant and
the only temporal information kept in the class is the
interval of enabled transitions.

b. Firing interval

Let t; = [, B;] be the time interval of t;, and sUB =
min;(3;) be the smaller Upper Bound of all fireable
transitions. Due to the strong semantics, a fireable
transition t; can be fired from a class C; during the fir-
ing interval
D’ (t;) = [o;, sUB']
(6)

The firing of t; leads to a new class Cjs;.

c. Time interval updating

The update of the time interval of a transition de-
pends whether there are time constraints or not in a
previous class. Consider that transitions t; and t, are
enabled in a given class C;, and that the firing of t;
would lead to a new class Cj;;. The new time interval
of ti in the class G, is

F(6) = [t- 6,0 [P (8) - D ()] N[0, 0)

(7
The intersection with [0, o) is done in order to con-
sider only positive instants of time. If the temporal
restriction [t — t;]; is redundant (( 5), the time interval
depends only on P(tk) and D/(t;) and ( 7 leads back

to:

F(t) = (F (t) - D (1)) N[0, o)
= ([ow, Bi] - [0, SUB' ) N[0, o)
(8)
The intersection with [0, o) is equivalent of doing
[max(O, ak-SUB) Bk-ai]

t,=[5,6] t,=[1,6]

t=1[3,8]

t,=[7,8]
t:=[0,4] [t-ti]1 = [1,3] ©=[1,3]
t3 t

. D(t:)=[0,4] l D'(t1)=[1.6] @

Fig. 3. State Class graph of Example 1

Example 1

Let us consider a TPN with three parallel transi-
tions t;, t, and t; enabled at the initial class C, with
time intervals 1°(t;) =[5, 6], I°(t,) =[7, 8] and I°(t;)
=[0, 4]. Applying ( 4) we obtain [t, — t;]o0= [3,8] and
[t —t3]o=[1,6], so only t;3 can be fired ([t,— t;]o=[1,3]
but [t; — t;]0=D). As these constraints are redundant,
the time domain of C, is made up only by the time
interval (see the SCG in Fig. 3). Using ( 6) we obtain
D’(t;)=[0,4] and the firing of t; leads to a new class
C, where t; and t, remain enabled. Using ( 8) the new
time intervals for t, and t, at class C; are I' (t;) = [1,
6] and I' (t,) = [3, 8]. Using ( 5), [t,- t;],=[1, 3] and
[t - t,];=9 so only t, is fireable from C;. In fact, as in
class Cy t; must be fired before t, this restriction
must also be met in class C,. As SUB' = 6, the firing
interval of t; from C; is Dl(tl) =[1. 6]. After t, firing,
the new time interval of t, at class C,, using ( 7), is

(k) =[t-t]in[I' () -D' (t)] =11, 3].

3. TIME FUZZY STATE CLASS GRAPH

3.1. Fuzzy Time Petri nets

The Fuzzy Time Petri net (FTPN) (Cardoso, 1998) has
the same structure that a TPN but the static time in-
terval associated with a transition is a fuzzy one, I
Let be 7: X — [0,1] a finite set of fuzzy intervals de-
fined over X = [0, +x). A FTPN = <N, Mo, ;> is a
triple where: PN is a Petri net, Mo is the initial mark-
ing and Iy : T— [ is a fuzzy time static interval that
associates with each transition t; a fuzzy interval Iy =
[a; b; ¢; d;] that represents the set of possible firing
dates of t;. Note that if a;=b; and ¢;=d;, the FTPN is
equivalent to a TPN with I(t;) = [a;, c;]. I«t;) is the
fuzzy set that delimits the possibility distribution of
the firing date of t;, Tgq) : X — [0,1]. For the sake of



simplicity the fuzzy time interval of a transition t;
is noted by the name of the transition: It;) = t; and
so the notation T, is replaced by m,;:
tieT,m,:T—[X—>][0,1]]

We must to point out that a transition is fired at a
date belonging to its fuzzy time interval which we do
not know beforehand.

3.2. Fuzzy transition firing

The dynamic behavior of a FTPN (resulting from the
transition firing) is similar to the one of a TPN, and
so the construction of the fuzzy state class graph is
based on the SCG (section 2.3). The main difference,
besides that the intervals are fuzzy instead of impre-
cise, is that the arcs are labeled by the possibility and
necessity measures.

As in the case of a TPN, we must calculate the fuzzy
firing interval of a transition and update the fuzzy
time domain of transitions that remain enabled after
the transition firing.

a. Time constraints

Let I; (t)= [a; b; ¢; d;] be the temporal interval of't; in
a class C;,© the fuzzy subtraction and

[t © t]o=1"(t) © I’(t) N [0, )

be the temporal constraint at the initial class Cy. The
temporal constraint between enabled transitions t; and
t at class Cj , j>0, is given by:

[t © ti]; = (P (t) © T (1)) M [t © t]i1 N [0, )
(9)

that is ( 5) extended to the fuzzy case. If [t © t]; is
not empty for all t, at C;, t; is fireable (it can actually
be fired). As in ( 5), if [ty © t].; < I{ (t) © I{ (t) the
temporal constraint is redundant.

b. Firing interval

Let be T; the fuzzy interval that delimits &;. For all
enabled transitions ¢,€7, ={¢,...,t,} at a class Cj,

the fuzzy firing interval D{(t) during which a transi-
tion t; can be fired from C; is given by:

DF()=Ti N [f,40) (| (—eot,], V t,eTc, 1;# 1,
JaJ#i

(10)

where sUB = min;(d;) is the smaller upper bound of
the support of all enabled transitions. D{(t;) must be
normalized (if it is not already):

Df’ (t)= Df’ (ti)/max(Dj (t))
(11)

meaning that an event that is initially defined as pos-
sible (core non empty) must stay possible during up-

dating. In the following we consider only normalized
intervals. The firing of t; leads to a new class C;;.

Example 2

Let us consider two parallel transitions ¢; and ¢, in a
FTPN, with I’(t;) =[0 2 2 6], and 1°(z,) =[4 5 7 9]
(Fig. 4). As [t; © t]p and [t, © t;]y are not empty,
both transitions are fireable. Using ( 10), the fuzzy
firing interval of t; is D (t) =022 6] (Fig. 6), on
the arc (Co,C,) in Fig. 5. The Fig. 7 shows D{(t,) =[4
4.4 4.4 6] (little black triangle) obtained using ( 10)
and after normalization (big gray triangle) using ( 11)
on the arc (C,,C;) in Fig. 5.

P1 (®P3
P2 (Op4

081 4 t

14

0

Fig. 4. I°:(t,) and I (t,)

Fig. 5. FSCG

1("00,'[1
B [t2, +0)
Y

Fig. 7. D{ (t2)

4 6 8 10 12|

Fig. 6. D{ (t;)

c. Time interval updating

The firing of a transition t; from a class C; leads to a
new class Cj;; with a new time domain. In the same
way that in TPN, there are two cases. The concept of
time constraint is the same both in TPN and FTPN.
We extend the imprecise case of ( 7) to the fuzzy case
and the new fuzzy time interval in the class Cj.; (con-
sidering only positives instants of time) after the
firing of t; during the interval D{(t,) is:

117 (6) = [t © t]; N [I{ (t) © D{ (t)] N[0, o)
(12)

If [ty © t;]; is redundant, ( 12) leads back to:

I(t) = (I (t) © D{ (1)) N [0, +o0 )
(13)
that is the fuzzy extension of ( 8) for a TPN. I{"'(t,)
must be also normalized.

Let us extend the Example 1 for a FTPN using I(t;)
=[5566], 1°(t,) =[77 8 8] et I(t;) = [0 1 3 4] at
Co. Only t; is fireable. After the firing of t; from C,
with Dfo(t3) = Ifo(t3) using ( 10), t; and t, remain en-
abled at the new class C;. Applying ( 13) we have
I(t))=[125 6] and I;'(t,) = [3 4 7 8] at class C,; us-
ing ( 9), the time constraint at this class is [t, © t;]; =



[1 1 3 3] and so only t,; is fireable. The firing of t;
during the interval D{' (t)=[1 2 5 6] leads to C, with
I7(t)=[1133](12).

3.3. Possibility and Necessity measures of transition
firing

If there are several fireable transitions we must deter-
mine, for each transition t;, the possibility and the ne-
cessity that it can be fired before the others. Extending
(2) to a set of enabled transitions t;:
(¢, < ()t;) = min () {sup(min (7, (x),77,(y))}
g Jag# XY

It corresponds also to II(t; < t;}) = sup D{(t;)), where
D{(t;) is the fuzzy set before normalization.

The necessity that t; has to be fired before the others
extending ( 3 for several enabled transition is:

N(t, < mt,) :min{ﬂsup]ti,[}'[}:min ﬂ sup{]ti,+m) ﬂ(—oo,tj [}

JoJ#i JJ#i JJ#i

For the sake of simplicity, we can note I(t;) and
N(t;). In Example 2, the possibility labeling arc (C°,
CYHin Fig. 5 is TI(t; < t;) = sup D{(t;) = 1 and the ne-
cessity is N(t; <t;) = 0,6; the labels for arc (CO, C3)
are I(t; < t;) = sup D () =0.4 and N(t, <t;) = 0.

4. APPLICATION RESULTS

Let us consider an unidirectional protocol of data
transfer (Juanole et a/, 2003) modeled by the Petri net
in Fig. 8. The data storing is indicated by the dotted
ellipse in the figure; the production is modeled by
places pl and p, and transition t;; the consummation
by ts and ps and the transmission by t,. We want to
know if an overwrite, due to the earlier arriving of a
new message whereas the precedent was not yet con-
sumed, can occur in this system (represented by tran-
sition ty).

The underlined Petri net (the structure without time
specifications) is unbounded and so it is not possible
to know if the overwrite is done. The temporal analy-
sis using a TPN or a FTPN allows obtaining some
more information.

Produce Send /
[4’5 55 56]

Producer Data S

The following time specification are considered for
the FTPN: m,(t) =[4 55 6], ma(t) = [2 2 3 3] ; m(T)
=Ty(t) =[0 00 0], ws(t) =[0 1 3 4]. The FSCG ob-
tained from the FTPN is shown Fig. 9. The details of
all classes C' (with the marking and fuzzy time do-
main) as well the fuzzy firing interval D'(t;) and the
possibility and necessity measures that label the arc
(C, C'*") are presented in Table 2. We can see at the
FSCG that a message can be overwrite (transition t,
can be fired). From class Cs, t, can be fired during the
fuzzy firing interval D’(t))=[0 0 0 0], with II(t;)=1
and N(ty)=0. Transition ts can also be fired during
D’(ts)=[0 0 0 0], with II(ts)=1 and N(ts)=0. It means
that both events are equally possible: this information
is the same that would be obtained by a TPN. Let us
now consider class C;,, from where t, and ts can be
fired. We have D'’(t,)=[2 2 2 3] with II(t,) =0.33 and
N(t,)=0; D'(ts)=[0 0 0 3] with TI(t;)=1 and N(ts)
=0.67. In this case, N(t5) > N(t,) and the firing of t5 is
more necessary that the one of t,.

Let us consider classes Cg, Cy, C; and C; in relation
to, respectively, classes Cs, Cs;, C, and Cy (see the
appendix). They have:

- the same marking,

- the support of the fuzzy time intervals are the same,
even if the core are different for some transitions
(e.g. t; and t, for C4 and C,),

- for all output arcs of classes Cg, Cy, Cig and Cy;, the
support of the fuzzy firing interval is equal, respec-
tively, to the support of the ones leaving classes Cs,
C3, C4 and C(,.

We call the classes Cs and Cg support-equivalent, or
s-equiv for short. The following classes are s-equiv:
(Cy, Cia, Cia), (G5, Cy, Cis, Cis), (Ca, Cio), (Co, Cra),
(C4, Cis, Cy7). Folding the s- equiv classes leads to a
graph were only the support of the fuzzy intervals are
considered (w € {0,1}). All possibility and necessity
measures on the arcs are I1 = 1 and N=0. It is in fact
the particular case of imprecision and the FTPN leads
back to a TPN with the following time specification:
I'(t)= [4,6], I'(tz) = [2.3], I'(ts) = I'(ts) = [0,0], I'(ts)=
[0,4]. The folded FSCG with the s-equiv classes is
equal to the SCG generated by this TPN using tool
TINA (Berthomieu et all, 2004). The TPN is a par-
ticular case of a a FTPN when the interval of all tran-
sitions are imprecise rather than fuzzy.

——— g,

- ~ O
0,0,0,0 Full Buffer
[ : P4 S

\ Consume

4 Client
_Ernpty Buffer

— amm

Fig. 8. Fuzzy Time Petri net model of a protocol



Fig. 9. Fuzzy State Class Graph

5. CONCLUSION

This paper presents a methodology to construct the
Fuzzy State Class Graph (FSCG) of a Fuzzy Time
Petri Net, which is inspired and extends the State
Class Graph of Time Petri net (Berthomieu and Me-
nasche, 1983). Possibility theory allows to clearly
distinguish the statements "A is possible" and "A is
certain”". It can be interpreted as a representation of
ordinal uncertainty based on linear ordering (Dubois,
and Prade, 1988). So, the advantage of the FTPN in re-
lation to the TPN is that it allows an ordering be-
tween the possibility/necessity of the firing of a

transition when several are fireable. In fact, in a
SCG, all firing transitions are equally possible, be-
sides in a FSCG the possibility and necessity values
of firing can be different. By the way, if only the
support of the time intervals (and so the firing inter-
vals) are considered, we obtain a TPN and the FSCG
becomes a SCG.
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C13, pl p4 p6, t=[1 3.25 3.25 4], ts==[0 1 3 4]

C14, p1 p3 pS p6, ti=[1 3.4 3.4 4], t:=[0 0 0 0]

C15, pl p4 p6, t=[1 3.4 3.4 4], ts==[0 1 3 4]

C16, pl p5 p6, t;=[0 0.4 2.4 4]

C17, pl p5 p6, t=[0 0.25 2.25 4]

Firing interval D'(t;) with possibility/necessarily measures

Do(t])*4556]N—l D(t)) =[0000],TI=1,N=0
D(t7) 2233],N=1 D(ts)=[0000], =1

[

[ ], I
D*(t;)=[0000],N=1 D) =[0133]N=1
D(t)=[1234],1I=1,N=0 D'(t)=[0024],N=1
D(t;)=[0134],II=1,N=0 Ds(t4) [0000],I=1,N=0
DYt)=[2223],11=0.5 D¥(ts)=[0000], TT=1,N=0
D*(ts)=[0013],N=0.5 D(t)=[1334]T1=1

D(ts)=[0134]T1=1 D¥(t;)=[0000] N=1

[
D'%t)=[22231T1=1/3 D'(t;) =[03.123.12 4] 1= 0.961
D(t;)=[0003] N=2/3 DB(ts)=[0 13 4] N=0.039
D''(t)=[0233]N=1 D'°(t)) = [004244]N—1
D')(t;)=[0000] N=1 D'(t;) = [0 0.25 2.25 4N
D(t) =[03.07 3.07 4] 1= 0.923
D(t;)=[013 4] N=0.077




