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Abstract: This paper addresses the existence of a maximally permissive PN controller for
the forbidden state problem of bounded Petri nets (PN) under partial observation. Based
on a Ramadge-Wonham theory, the refined controlled observer reachability graph of the
controlled PN is determined and represents the most permissive behavior with liveness
requirement and uncontrollable / unobservable transitions. The theory of regions is then
used to generate a set of control places, if such controller exists, to be added to the plant
PN model. Necessary and sufficient conditions for the existence of pure and impure
control places are then presented. Copyright © 2005 IFAC
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1. INTRODUCTION

Previously, we proposed a general approach for
synthesizing a set of control places that optimally
solve a forbidden state problem of any bounded Petri
net (PN) when such PN controller exists (Achour, et
al. 2004). Indeed, it considers a general set of
forbidden states in addition to liveness requirement
and the presence of uncontrollable / unobservable
transitions.

This paper addresses the existence of optimal PN
controller for control places design problem for
bounded Petri nets under partial observation. The
goal of the supervision is to avoid a set of forbidden
states. The control synthesis method is based on the
theory of regions which is a technique for Petri net
synthesis from automata models. Plant models under
consideration are generalized bounded Petri nets.
The Petri net controller is optimal in the sense of
maximum permissiveness under the restriction of the
liveness of the controlled system. Supervisory
control of partially observable Petri net plants has
been addressed in (Moody and Antsaklis, 1999;
Stremersch, 2000; Moody, et al., 1996) using linear
algebra approaches which are extensions of the
optimal place-invariant approach proposed in

(Yamalidou, et al, 1996) for enforcing linear
constraints for totally controllable and observable
Petri net plants. The most serious drawback of these
approaches is that the optimality of the control policy
cannot be guaranteed. An exception is the linear
algebra approach proposed in (Darondeau and Xie,
2003) for enforcing linear constraints of firing count
vector and/or markings of partially controllable and
partially observable marked graphs. Note that the
liveness of the controlled system cannot be enforced
with these approaches. We follow, in this paper, the
approach of (Ghaffari, et al., 2003) to address the
forbidden state-transition problems of generalized
Petri net model with uncontrollable and unobservable
transitions.

This paper is organized as follows. Section 2
introduces the observation problem, and presents
Observer Reachability Graph, Refined Observer
Reachability Graph and Refined Controlled Observer
Reachability Graph that we use for determination of
the desired behaviour of the optimally controlled
plant. Necessary and sufficient conditions for the
existence of pure and impure control places are
presented in section 3. Two particular cases for
which optimal PN controller does not exist are
presented in Section 4.



2. DESIRED CONTROLLED BEHAVIOR

The supervisory control problem considered in this
paper concerns a bounded Petri net with
uncontrollable and/or unobservable transitions and
starting from a given initial marking. Each transition
is either controllable and observable, observable but
not controllable, or unobservable and uncontrollable.
The goal of the supervisory control is the avoidance
of a set of forbidden states and the enforcement of
the liveness or nonblockingness that requires the
reachability of some marked states. In this paper, we
restrict to the case with the initial state as the unique
marked state. The liveness requirement is then
equivalent to the reversibility.

2.1 Observer Reachability Graph

In a Petri net N with unobservable transitions, the
system state represented by the current marking is
not fully known.

Example 1: Consider the Petri net of figure 1. From
the initial marking (1, 0, 0, 0)' and after the firing of
the transition ¢, the real state of the plant becomes
unknown. In fact ¢, and #; are unobservable and from
the supervisor point of view, the token can be in p, or
in p3 or in py.
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Fig. 1. Petri net model with unobservable transitions

A reachability graph RG(N, M,) is often used to
model the behaviour of a bounded Petri net (N, M)
and for its supervisory control. With unobservable
transitions, the plant state marking is only partially
known and the reachability graph cannot be used for
the supervisory control. For this reason, we
transform a reachability graph into an observer
reachability graph, denoted by RG(N, M), to
represent all possible sequences or language of
observable transitions. Algorithm 1 which is based
on the framework presented in (Cassandras and
Lafortune, 1999) is used for this transformation. The
construction of this observer reachability graph is
based on the assumption that the initial marking M,
is known and on the following definitions.

Definition 1: R“(x) denotes the set of
indistinguishable states with respect to a Petri net
marking x, and represents the set of states reachable
from x by firing only unobservable transitions.
Formally, R“(x)={x'0RGWN, My)00 o O (T*)°
and x[a)x' } where T is the set of unobservable

transitions. For a set S of states, R*(S) = | JR"’(x).
X8

From the above example, it is clear that the state of
the observer can only be modified by observable
transitions and hence each state of the observer
represents a set of plant states. In this paper, we call
the state of the observer macro-state and plant states
micro-states. More precisely, each macro-state y
corresponds to a set of indistinguishable micro-states
and vice versa. As a result, the initial macro-state y,
of the observer corresponds to the set of micro-states
R"(M,) that are states reachable from M, before the
firing of unobservable transitions.

RGP(N, M,) is constructed as follows.

Definition 2: A transition t is said firable at a macro-
state y if t is firable from at least one micro-state x,
i.e. [Jx[k such that x [t> where the notation x[t>
indicates that t is firable at x .

Definition 3: The firing of any observable transition t
from a macro-state y leads to another macro-state y'
defined as follows:
= YR @)

xOy

x[t>x'
which corresponds to micro-states reachable from a
micro-state x in y by first firing the observable
transition t followed by unobservable transitions.

Two macro-states y and y’ are considered as the same
macro-state if they correspond to the same set of
micro-states.

The construction of the observer reachability graph
RGP(N, My) of RG(N, M,) is summarized in the
following algorithm:

Algorithm 1:

1. Define the initial macro-state y, = R"(M,)

2. For each unexplored macro-state y and for each
observable transition t firable at y, determine the
macro-state y' obtained from y by firing t.

3. If y' exists, add an arc labelled t from y to y'
otherwise, create the mnew macro-state y' in the
observer reachability graph and add arc (v, y') with
label t.

4. If there exists at least one unexplored macro-state,
go to step 2. Otherwise, stop.

Let us use algorithm 1 to derive the observer
reachability graph of the Petri net example of figure
1. The reachability graph is given in Figure 2.a.
Initial macro-state y, is yy = R"(xo) = {xo}. Transition
t; is the unique observable transition firable from y,
and leads to a macro-stat y; defined as follows:
yi= UR™(xX") =R"(x))={x1, X, X3}

Ayg

x[tl>x'

No observable transitions are firable from
y1={x1, X5, x3} and the construction is finished. The
observer reachability graph RG°(N, M) is shown in
figure 2.
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Fig. 2. Reachability graph and observer reachability
graph of the Petri net of figure 1

J/1:{X1,x2,xz}

If the firing of an observable transition #° at a macro-
state y leads to another macro-state y’, then y' is said
reachable from y and is denoted as y[”>)’.

Remark: Firing an observable transition ¢° at a
macro-state y leads to one macro-state even if ¢° is
firable at more than one micro-state in y. This
implies that the reachability relation of the observer
reachability graph is an aggregate representation of
different micro-state-transition relations in the
reachability graph.
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To summarize, firing an unobservable transition £ at
a micro-state x; leads to a micro-state x; but does not
change the macro-state y,. On the other hand, firing
an observable transition #° at a macro-state y leads to
another macro-state y .

2.2 Refined Observer Reachability Graph

We now introduce the refined observer reachability
graph RG"°(N, My) which is a state graph obtained
by refinement of the observer reachability graph
RGP(N, My) to introduce unobservable transitions
between micro-states. More precisely, each node
representing a macro-state y is represented by several
nodes each representing a micro-state of y and
unobservable transitions between these micro-states
are represented. Further firings of an observable
transition ¢° from different micro-states of y are
represented separately. This graph is equivalent to
the parallel composition of the RGP(N, M,) and
RG(N, M,). The refined observer reachability graph
RG"(N, My) related to the example 1 is given in
figure 3.
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Fig. 3. Refined observer

RG®(N, M)
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2.3 Refined Controlled Observer Reachability Graph

This section deals with desired controlled behavior
represented by refined controlled observer
reachability graph RG*“°(N, M,). The RG*°(N, My)
determination is based on forbidden states, liveness
requirement and by taking in to account
unobservable/uncontrollable transitions.

The starting point of this computation is the refined
observer reachability graph RG*(N, M,).

Definition 4: A macro-state is said forbidden if at
least one of its micro-states is forbidden. Let Yy be
the set of forbidden macro-states.

Definition 5: A macro-state is said dangerous if it
leads to  forbidden  macro-state by  firing
uncontrollable transitions. Let Yp be the set of
dangerous macro-states. These states can be
determined on the refined observer reachability
graph RG®°(N, M,y).

Definition 6: The Live Sub-Graph (LSG) is a sub-
graph of RG*°(N, My) containing all macro-states y
such that all micro-states x in y can be led to a
micro-state representing the initial marking.

Definition 7: A macro-state is said blocking if it
contains at least one micro-state that uncontrollably
leads outside the Live Sub-Graph (LSG) of the
refined observer reachability graph. Let Yy be the set
of blocking macro-states. In other terms, if a macro-
state contains a blocking micro-state then the macro-
state if blocking too.

The computation of the maximally permissive
behavior consists in iteratively determining and then
removing all forbidden/dangerous/blocking macro-
states till convergence to a LSG containing no
forbidden/dangerous/blocking  macro-states.  The
maximally permissive behavior is represented by the
Live Sub-Graph LSG of controlled system, since
only the dangerous and blocking macro-states are
eliminated is enumerated in (Achour, et al. 2004).

Definition 8: The sub-graph of observable
reachability graph RG°(N, M,) obtained by removing
all macro-states not belonging to Refined Controlled
Observer Reachability Graph RG*“°(N, M,) is called
Controlled Observable Reachability Graph denoted
by RG°(N, M,).

Clearly, RG“O(N, M) represents the observable
maximally permissive behavior of the controlled
plant and will be used for the determination of
control places. Let Y| be the set of all macro-states of
RG°(N, M;) and Q the set of all macro-state-
transitions leading outside RG® (N, M,). Formaly,
the set of state-transitions the controller has to

disable is Q= {(y [ — y") Oy0¥, Oy’0Y.}. Each

state-transition to be disable by the controller is
called an event separate instance.

3. CONTROL PLACES DESIGN

Forbidden state problems and forbidden state-
transition problems (Ghaffari, et al 2003) of
bounded Petri nets (N, M;) may be solved by the
addition of control places p. defined by
Mo(pe),C" (e, ),C (pe, .)) where My(p,) is its initial



marking and C'(p., . ) (resp. C(p., . )) is its weighing
vector of arcs from transitions of N to p. (resp. from
p. to transitions of N). Clearly, due to observability
constraints, such arcs are allowed only between p,
and observable transitions.

3.1 Preliminaries and some basic relations

Consider the plant Petri net model (N, M,) and its
controlled observer reachability graph RG°(N, My).
Each control place p and for any observable
transition ¢ from any macro-state M in RGN, My):
M'(p)=M(p)+C(p,t), O
O(M 0 — M')YORG®C (N, M)
where M, is the initial macro-state, C(p, .) the
incidence vector of p and M’ the new macro-state or
equivalently the destination node of arc ¢.

Consider now any non-oriented cycle y of the refined
controlled observer reachability graph. Applying the
state equation (1) to nodes in y and summing them up
gives the following Cycle equation.
2C(p,n=0, OyOs ()
a1
where J[t] denotes the algebraic sum of all
occurrences of ¢ in y and S the set of non-oriented
cycles of the graph.

M(p)=My(p)+C(p. )y,
where FM is the algebraic counting vector of [, .

The reachability of any macro-state M in
RG°(N, M,) implies that:

My(p)+C(p, )Ty 20,
OM ORGRC (N, M )

which will be called the Reachability condition.
Lemma 1: Any control place p. of the controlled net
satisfies both relations (2) and (3).

€)

3.2 Pure control places

In order to obtain exactly the desired behavior, for
each event separation instance (M I - M') in Q

such that M is a reachable macro-state of
RGO(N, My) and ¢ is a controllable transition to be
disable by the controller at M, ¢ should be disabled
by some control place p.. Since p. is pure, ¢ is
disabled at M if and only if:

Moy(p)+C(p., )y +C(p,,0) <0,

4)
O I - MHOQ
Relation (4) will be called event separation
condition.

Theorem 1: A desired behavior RGCO(N, M), can be
realized by adding pure control places to (N, My) if
and only if there exists a solution (My(p.), C(p., . ))
satisfying conditions (2), (3) and (4) for each event
separation instance in Q.

Proof: () Consider the controlled net (Nc,M,) =
(N,Mp) O {p.}. Since all places in {p.} satisfy
equations (2) and (3), all transitions in RG° are
firable and the reachability graph obtained by firing
labeling transitions in RG? is still RG® which
imply that RG’ 0 R(Nc,M,). Further, each event
separation instance in Q is solved by a control place
Pei> 1.€. event separation condition (4) holds with the
place p.. This implies that all transitions in Q are
disabled in the controlled net (Nc,M,). To conclude,
R(Ne,My) = RG<°.

(=) Assume that the reachability graph of the
controlled system R(Nc,M0) is the maximally
permissive behavior. Each place of (Nc,M,) satisfies
necessarily equations (2) and (3), and for each
instance in Q, ¢ is necessarily prevented by some
place p., thus satisfying relation (4).
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Fig. 4. A forbidden state-transition problem 1

Pure control places cannot solve all the forbidden
state-transition problems. Consider for this purpose
the Petri net model of figure 4.a. Control
specification is not to fire #, after ¢, i.e. to forbid
firing of t, from states such that p; and p4 are both
unmarked. The refined observer Reachability Graph
is given in Figure 2.b and the refined controlled
observer reachability Graph without imposing the
liveness requirement is obtained by removing the arc
t, outgoing ys. . The event separation instance to

solve is (ys arz - yg). Let us use the theory of

regions to determine a pure control place p. solving
this problem. As RG*“°(N, M,) does not contain any
cycle, p, satisfies the following system;

Reachability conditions of admissible macro-states:
(L) yo:My(p.)20

(1”) y3:M0(pc)+C(pcat2)ZO
(Liid)  ys: Mo(p)+ C(porty) 20
(llV) y8:MO(pc)+C(pcat2)+C(pc3t4)2O

Separation condition:

(1y)  (rs 0B - yg):
MO(pc)+C(pc’t4)+C(pc’t2)<O

Note that the two last inequalities are contradictory.
So, there is no pure control place to solve this
problem. However, an impure control place exists as
it will be shown in the next subsection.



3.3 Impure control places

Self-loops are introduced to increase the control
power of control places. For any event separation

instance (M 0 -~ M")in Q, only control places p.

with self-loop connecting p. and ¢ need to be

considered. According to Lemma 1, cycle equation

(2) and reachability condition (3) hold.

Since the control places are impure, the reachability

conditions (3) are no longer enough to guarantee the

reachability of markings M in RG(N, M,).

Additional conditions are needed to ensure firability

of a transition ¢ enabled at any markings M in

RGO(N, My):

M(p.)=My(p)+C(p., )y 2C (pest),

OM([¢) in RG? (N, M) (5)

The event separation condition related to
(M" I - M") becomes:
My(p)+C(pe, )T, <C (pest)  (6)

Theorem 2: A desired behavior RG°(N, My), the
Controlled Observer Reachability Graph of a
bounded Petri net (N, M), can be realized by adding
impure control places to (N, My) if and only if there
exists a solution (Myp.), Cp,, . ), Clp, t ))
satisfying conditions (2), (3), (5) and (6) for any
event separation instance in Q.

Proof: The proof of this theorem is similar to that of
theorem 1

Let consider again the forbidden state-transition
problem of figure 5. It may be solved by an impure
control place p. iff p. satisfies relations (1.7), (1.i7),
(1.i), (1.iv) and:

MO(pc) 2 C_(Pcatz )

MO(pc) +C(pcat4 ) < C_(pcat2 )

A solution may be given by My(p.)=1, C(p., t4) = -1,
C(p., ) =0and C(t,) =1 (see figure 5).

P P3
£ PR Controllable transition
1 3
e==9 Unobservable transition
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t —

Fig. 5. The controlled net corresponding to problem
of Figure 5

Note that combination of (5) and (6) leads to:

Cpe. ), -F . )>0, -
OM([t) in RGC (N, M )

Corollary 1: There exists an impure control place

solving an event separation instance (M~ [ - M")

iff the linear system defined by relations (2) and (7)
has a solution.

4. EXISTENCE OF CONTROL PLACES

In some cases, the unobservability constraint makes
that optimal PN controller might not exist.

Consider the example of figure 6. Assume that the
control specification requires that transition 7" should
be disabled by the controller when p; and ps are
marked i.e. 7 should not be fired from y;, while it is
firable. Let y’ be such that y;[7>)’. The event

separation instance is then(y, O — y'). Let »” be

such that yg[7>y". Let us use the theory of regions to
determine the controller.

Remark In the RGO(N, M) given in figure 6, all
reachable macro-states by firing transition 7 are not
represented.

(@) )
Fig. 6. A forbidden state-transition problem 2

Consider the reachability condition (3) of macro-state
v 2.0) y™
MO(pc) + C(pcst4 ) +C(pcat1 ) + C(pcaT) 20

Consider now the separation condition of macro-state
o) (y; 00 Sy
MO(pc) +C(pc’t1 )+C(pcat4 ) +C(pcaT) <0

Note that the inequalities are contradictory. So, there
is no control place to solve optimally this problem.
However, a more restrictive controller exist and cane
be solved by a control places (figure 7).

Corollary 2: There exists a control place that forbids
the firing of a transition ¢ at some macro-state y” such
that yo[0,>y’ if it does not exist a macro-state y” such
that yo[0,>y” and &7 =g from which ¢ can fire.

Proof: Consider a Controlled Observer Reachability
Graph RG°(N, M) and a event separation instance

(y, @I ~ y,) where yo[0;>y;. Let y, a macro-state
such that yy[0,>y, and y,[> y5 From theorem 1, a
pure control place exists iff there exists a solution
(My(p.), C(p., . )) satisfying conditions (2), (3) and
(4) for any event separation instance in Q. However,
)=y, : Mo (p) +C(p,.)T35 +C(ps1) 20, and
(D= M- yp:

My(p)+C(p,,. )07 +C(p.,t)<0, two contradictory
inequalities if g7 =47 . So, there is no pure control
place to solve optimally this problem.



Fig. 7. Restrictive controller corresponding to
problem of Figure 7

Similarly, From theorem 2, an impure control place
exists iff there exists a solution (M(p.), C(p., . ), C
(p., t)) satisfying conditions (2), (3), (5) and (6) for
any event separation instance in Q. However, (5) =
Yy o My(p)+C(p..)85 2C (p,.t), and (6) =
O M -yt Mo(pe) +C(pes)OT <C(pest) s tWO
contradictory inequalities if g = J3 . So, there is no
impure control place to solve optimally this problem.

In the same spirit, control places for event separation
do not exist and the theory of regions fails to provide
a solution if the set of cycle equations has full rank
with zero as the unique solution for C(p,, .). Figure 8
is such example.
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Fig. 8. A forbidden state-transition problem 3

Assume that the control specification requires that
transition 7 be disabled by the controller when p, is
marked i.e. T cannot fire from y;, while it can fire.
Let Use theory of regions to determine the control
place to solve this forbidden state-transition problem:
Consider first the cycle equations:

Bi) W :C(pest)) +Clpenty) =0
(3”) y2:C(pc’t4)+C(pc’t5):O
(3.i)  Y5:C(p..t,)=0

Consider the reachability conditions of the

admissible macro-states:
B.v)  yoMy(p.)=0

BY)  YoiMy(p)+C(p,.T)20
(3.vi) YiiMy(p)+C(p.,t;)20
(Buvii) Yy My(p )+ C(pesty) 20

Guiii) Y, 1 Mo(p)*+ C(posts) * Clp T2 0

Consider now the separation condition of the
inadmissible macro-state:

Gix) (o 0d -y

MO(pc) + C(pcstl ) +C(pcaT) <0

Note thatC(p,,t;)=0 andC(p,,t;)=0. Then it

dose not exist a control place to solve this forbidden
state-transition problem.

Assume now that the control specification requires
that transition 7 be disabled by the controller when p,
is marked i.e. T cannot fire from y,, while it can fire.
In this case, a solution exist and the control place is
characterised as fallows:

My(p:)=1,C(pesty) =1, Cp,,ts) =1, C(p,,T) =—1.

5. CONCLUSION

In this paper, we present a rigorous setting for the
general PN controller design problem given desired
behavior. Desired behaviors are defined according to

general forbidden state-transition specifications
which include the case of forbidden state
specifications.
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