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Abstract: A novel neural modelling method, namely ‘eng-genes’, is proposed for 
complex nonlinear dynamic engineering systems. This method performs system 
modelling by first establishing the ‘eng-genes’ – some fundamental engineering 
functions from 'a priori' engineering knowledge, which are then constructed and 
coded into appropriate chromosome representations. Given a suitable fitness 
function, using evolutionary approaches such as the genetic algorithms, a population 
of chromosomes evolves for a certain number of generations to finally produce a 
neural model best-fitting the system data. In this paper, the eng-genes genetic 
modelling framework is discussed in detail and it is then applied to model two 
nonlinear engineering systems to confirm the effectiveness. Copyright @2005 IFAC 
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1. INTRODUCTION 
 
Nonlinearity widely exists in fundamental 
engineering equations, for example, the Bernoulli 
equation for non-turbulent, compressible, and 
barotropic fluid undergoing steady motion; Navier-
Stokes equations for incompressible, Newtonian 
fluids in both laminar and turbulent flow; and the 
Arrhenius equation for chemical reactions. For 
complex dynamic engineering systems exhibiting 
non-linear behaviour, to obtain a simple yet 
meaningful model for real-time system operation and 
control is a pressing problem. Ideally, such model 
can be easily built and updated with desired 
generalisation performance, and it can also retain 
physically interpretable information to help control 
engineers and human operators to gain a deep 
knowledge about the system under control.  
 
Current system modelling techniques more or less 
fall into three general categories, namely ‘white-

box’, ‘black-box’ and ‘grey-box’ methods, though 
the boundaries between different categories are 
getting ‘grey’. For engineering systems, transparent 
modelling often results in a set of partial differential 
equations (PDEs) and ordinary differential equations 
(ODEs). To solve these equations may require the 
use of numerical tools, i.e. the computational fluid 
dynamics (CFD) method, which sometimes is quite 
demanding in computing and is time-consuming for 
complex engineering systems, therefore not suitable 
for the real-time operation and control, other than for 
plant design (Thompson and Li, 2003).  
 
Neural models and data-driven regression models 
may require little physical insight, and the model 
quality then largely relies on the training data. In 
practice, the experimental data or field operational 
data is often limited, and the resultant models can be 
poor in interpreting unseen data/phenomena, and 
they may also lack transparency. Grey-box approach 
is used when physical knowledge is partially 



incorporated into the modelling (Bohlin, 1994; 
Pearson and Pottmann, 2000; Sohlberg, 2003; 
Tulleken, 1993). Depending on how, and how much, 
‘a priori’ engineering knowledge can be used, there 
exist different grey-box methods. There are two 
general categories among which one method, based 
on the regression model structure, uses ‘a priori’ 
knowledge to obtain a set of constraints on model 
parameters or variables, such as constraints on the 
static gain in a linear model. The others start with a 
model originating from the mathematical relations, 
which describe the behaviour of the system. In the 
later approach, physical modelling and system 
identification form two interacting paths, and most 
methods would assume that the model structure is 
known 'a priori', and the major modelling task is then 
to identify unknown parameters and unmodelled 
dynamics. These two grey-box approaches have 
limitations when the engineering systems are either 
too complex to derive a simplified model or that our 
physical knowledge about the process is incomplete.  
 
The eng-genes method proposed in this paper takes a 
different approach in incorporating system physical 
knowledge into a neural network structure. It starts 
system modelling by establishing some fundamental 
static engineering functions from 'a priori' 
engineering knowledge. The fundamental functions 
reflect the nonlinearity uniquely identifiable from the 
fundamental physical or chemical laws of 
engineering system and may be regarded by 
analogous to the genes in the human neural system. 
It is then natural to construct and code these 
functions and their associated structure into 
appropriate chromosome representations. Given a 
suitable fitness function, using evolutionary 
approach such as the genetic algorithm (Goldberg, 
1989), a population or multiple populations of 
chromosomes will evolve for a certain number of 
generations to finally produce a neural model best-
fitting the system.  
 
This paper is organised as follows. In section 2, the 
‘eng-genes’ method and its framework is discussed 
in detail. Then two case studies are presented in 
section 3 to confirm the effectiveness. Section 4 is 
the concluding remarks.  
 
 

2. THE ‘ENG-GENES’ METHOD 
 
The solutions of a set of partial and/or ordinary 
differential equations for an engineering system are 
some multivariate continuous real-valued functions. 
To obtain these multivariate functions however can 
be difficult and computationally intensive. 
Kolmogorov proved that these multivariate functions 
could be represented by superposition and 
composition of continuous functions of only one 
variable- for each  (n is the dimension of the 
variable space) there exist continuous functions -  
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where  and pλ  are independent of f, but g is 

dependent on f. 
 
Although the Kolmogorov superposition theorem 
does not intend to solve multivariate engineering 
equations, it indeed has suggested the neural network 
structure where different system independent basis 
functions can be used to approximate the original 
system. However, despite the fact that neural 
networks provide a universal structure for modelling 
nonlinear functions, conventional neural models 
carry little physical knowledge about the system.  
 
To incorporate ‘a priori’ engineering knowledge into 
modelling while taking advantage of the neural 
structure, a number of researches have been carried 
out. Most methods employ a hybrid modelling or 
semi-physical modelling method (Psichogios, and 
Ungar, 1992), i.e. the clearly defined physical 
equations remain in the model, while neural 
networks are used to approximate unknown 
parameters or unknown dynamics, etc.  This method 
has limitations when the engineering system is too 
complex to derive a simplified model. Literature 
survey shows little has been done so far to 
incorporate the physical knowledge into the neural 
structure, i.e. to select activation functions for the 
neural model from 'a priori' engineering knowledge 
to approximate the continuous function g in equation 
(1). Although each type of neural networks, e.g. 
MLP, RBF, Wavelet, etc is claimed to be successful 
in some application domains, little has been done so 
far to study why one paradigm has worked well in 
some applications, but failed in others.  
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Fig. 1. ‘Eng-genes’ network with one hidden layer  

 
In the proposed eng-genes method, some 
fundamental static functions – so called ‘eng-genes’, 



abbreviation of ‘engineering genes’, are extracted 
from 'a priori' knowledge. The ‘a priori’ knowledge 
can be first principle laws specified in ODEs or 
PDEs for the system, or in more general sense, some 
fundamental chemical or physical laws for a wide 
range of problems. These fundamental functions are 
then used as the activation functions in a multiplayer 
neural structure.  

It is interesting to notice that for these fundamental 
engineering functions, the manipulation on them by 
operators like superposition and subtraction, 
multiplication and division, or differentiation and 
integration, may produce functions of imilar type. 
These properties allow one to separate and to refine 
these functions. A simplified and realistic model can 
then be produced to represent the original system 
through appropriate composition and combination. 
This is analogous to producing a simplified 
equivalent circuit with fewer inductors, capacitors 
and resistors from a complex electrical circuit.  

 
A mathematical formulation of an ‘eng-genes’ model 
for a MISO (multiple input single output) system is 
given by  
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Since these fundamental functions or ‘eng-genes’ 
reflect physical reality in one way or another, they 
are useful in helping operators and control engineers 
to gain some physical insight into the system. For 
example, in modelling many chemical, biological or 
mechanical processes,  and 

and are the two types of ‘eng-
genes’, where x is a system variable like mass flow 
of materials, chemical concentrations, or 
environmental temperature, and b
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1, b2, c1, c2 are 
parameters. ϕ  is related to the Arrhenius behaviour 
in kinetics of chemical or biological processes. 
According to the well-known Arrhenius equation, 
the reaction rate k is expressed as  
where is the reaction rate, A is a constant, E

)RT/aAe(-E

2

a is the 
activation energy, R is the universal gas constant, 
and T is the temperature. ϕ  appears in many 
industrial processes in relation to non-Arrhenius 
behaviour of the chemical or biological reactions, or 
to the thermal or fluid dynamics.  

 

where denotes the inputs to the 

‘eng-genes’ network; ,  denotes the 
number of neurons in the k’th hidden layer, h is the 
number of hidden layers; ,  is the 
output of the i’th neuron in the k’th hidden layer; 

,   is the output weight from the i’th 
neuron of the last (the h’th) hidden layer to the 
output and  is the output bias; , , 

, are the weights from j’th neuron of 
the (k-1)’th hidden layer to i’th neuron of the k’th 
hidden layer and  is the bias; , 

, denote the eng-gene for the i’th neuron 
of the k’th hidden layer as its activation function; 

is the eng-gene for the output neuron.  
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In case that the complete set of PDEs or ODEs for 
complex engineering systems is unavailable, it is 
always possible to examine a set of general chemical 
or physical laws applicable to the specific system. 
Therefore it is feasible to build an eng-genes library 
for engineering systems of different physical natures, 
and genetic algorithms can then be used to select 
appropriate eng-genes from the library and to 
optimise the neural model for the specific system 
under study.  

 
Fig.1 illustrates such an eng-genes neural structure 
with only hidden layer in the network, where 

,  are the ‘eng-
genes’ in the first hidden layer or the output layer.  

q,...,1j,)1(
i =ϕ m,...,1j,)y(

i =ϕ

    
2.1 Extraction of ‘eng-genes’ 2.2 Optimisation in eng-genes based neural 

modelling  
 
For engineering systems where ‘a priori’ 
fundamental knowledge or first-principal laws are 
available, it is possible to establish some 
fundamental engineering functions or ‘eng-genes’. 
These fundamental functions are appropriate static 
non-linear functions that are uniquely identifiable 
from the ‘a priori’ engineering knowledge, and they 
can be exponential, power, trigonometric, or rational 
functions, etc. However, the exact function form 
depends on the application, or more specifically the 
mathematical equations describing the fundamental 
laws governing the behaviour of the system.  

 
Given a performance index, optimisation of the 
neural model (2) is a mixed integer non-linear hard 
problem taking into account the following issues: 
 
Selection of neural inputs - In neural modelling of 
non-linear complex systems, the neural inputs may 
include any system input variable of interest and 
system outputs (for recurrent neural network) with 
time delays, and the number of candidate neural 
inputs can be extremely large. To select a subset of 



The differential equations representing the CSTR 
reaction are shown as follows. 

inputs is a combinational problem, and the selection 
process can be quite time-consuming. 
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Optimisation of the neural structure - Once the 
neural inputs and dominant ‘eng-genes’ are selected 
and optimised, the next step is to optimise the neural 
structure in (2), including the number of hidden 
layers and the number of hidden nodes in each layer.  

where Ca is product concentration, Cao is the inlet 
feed concentration, q the process flow-rate, To and 
Tco the inlet feed and coolant temperatures 
respectively. ko, E/R, v, k1, k2 and k3,  are 
thermodynamic and chemical constants relating to 
this particular problem.   

Network training: Finally to identify the optimal 
weights and biases.  

 
A MLP model and an eng-genes model were 
developed to model the above system. Firstly, the 
system (3) and (4) was simulated at a sampling 
period of 0.2 seconds, and subjected to an input 
consisting of uniformly distributed random values of 
the input qc(t) in the range [-10, 10] from the 
operating point. 3000 data points were are obtained, 
among which 120 samples were used for training, 
and the rest 2880 samples were used for validation. 
The statistics of product concentration Ca in the two 
data sets is illustrated in Table 1.  

 
It is difficult to deal with the above optimisation 
issues effectively using conventional analytic tools. 
As adaptive stochastic optimisation tools, 
evolutionary algorithms such as genetic algorithms 
(GAs) have been shown effective for complex 
optimisation problems. Prototype software coded in 
C++ has been developed by the authors as an 
integrated optimisation platform for neural 
modelling, dealing with all the above optimisation 
issues. First-order or second-order training 
algorithms coded in Matlab programs for eng-genes 
networks have also been developed.  
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2.3 ‘Eng-genes’ based neural modelling framework 
 
The ‘eng-genes’ based neural modelling procedure 
can be summarised as follows together with Fig. 2: 
Step 1 Establish fundamental mechanism of the 
engineering system based on first principle laws.  
Step 2 From these ‘a priori’ knowledge to extract 
fundamental functions or ‘eng-genes’. 
Step 3 Data acquisition and pre-processing, generally 
though experimental tests or selection from real-time 
operational data from the plants.  Fig. 2. ‘Eng-genes’ framework 
Step 4 Optimisation of the ‘eng-genes’ based neural 
model using genetic algorithms, or for simple 
applications using LM method for neural training.   

 
 
 Ingredients in 
 Step 5 Model validation. 
  

  
3. CASE STUDIES  

  Product      out  
 Coolant in Case 1- Continuous Stirring Tank Reactor (CSTR)  
  

Fig. 3 shows a schematic representation of a 
chemical system common to many chemical 
processing plants, known as a Continuously Stirred 
Tank Reactor (CSTR). Within a CSTR two 
chemicals are mixed and react to produce a product 
compound at a concentration Ca(t), with the 
temperature of the mixture being  T(t). 

 
 
 

 Coolant out 
 
Fig. 3. Schematic representation of CSTR 



Table 1 Statistics of Ca in the two data sets (mol/l) 
 

 Min Max Mean STD 
Training 0.102 2.0 1.051 1.342 

Validation 0.086 2.0 1.043 1.353 

Fig. 3 illustrates the long-term prediction of the eng-
genes model over the validation dataset when the 
model was evolved for 150 generations. 
 
 
Case 2 -  NOx emissions in a coal-fired power plant   

 

Nitrogen oxides (NOx) emissions from combustors 
and engines have many harmful effects on both the 
environment and human health. In coal-fired power 
generation plant, the major part of NOx (nitrogen 
oxides) emission has been found to be NO. To model 
and predict the NOx emission level in power plants 
is the first step for optimisation and control to reduce 
the overall pollutant emissions (Thompson, and Li, 
2003). According to De Soete (1975), there are three 
main sources of NO in combustion, namely thermal 
NO, Prompt NO and Fuel NO. The thermal, 
temporal and fuel NO formation mechanism can be 
found in (Thompson, and Li, 2003). According to 
these mechanism, two ‘eng-genes’ were selected as 
the activation function in ‘eng-genes’ based neural 
modelling,  and . 
Again, 
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1ϕ  is an ‘Arrhenius’ type ‘eng-gene’, 2ϕ  is a 
‘non-Arrhenius’ type ‘eng-gene’.  

Fig.3. Long-term estimation performance of the eng-
genes model on the validation data 

 
• MLP model - A 5-3-1 multilayer perceptron 
(MLP) was first developed. The GA based 
optimisation platform was used to select the network 
inputs, to optimise the network structure as well as to 
identify the optimal network weights and biases. The 
population size in the genetic algorithms was 200. 
An elitist scheme was employed in the genetic 
optimisation and, in each generation, the 8 best 
chromosomes were retained. The long-term 
prediction performance of the MLP model over the 
two data sets when the network evolved for 100 
generations and 150 generations is listed in table 2. 
The selected neural inputs are qc(t-2), qc(t-3), qc(t-5), 
Ca(t-1), Ca(t-6). 

 
In this paper, a coal-fired power plant in Northern 
Ireland was studied with a full load of 300 MWe 
with oil firing or 200 MWe with coal firing. 
According to the plant operation mechanism, the 
following operational variables are identified to have 
contributions to the overall NOx emission (Li, 
Thompson & Peng, 2003): Mass flow of fuel  

(Kg/s); Mass flow of air (Kg/s), specifically, 
mass flow of primary air  and mass flow of 

secondary air  (Kg/s); Tilting position of 
burners 

fm

am

pam

sam
θ  (degree). 

 
• ‘Eng-genes’ model- According to (3) and (4), the 
nonlinearity originates from the Arrhenius equation, 
and therefore only one ‘eng-genes’ were extracted, 
that is  where x is the activation 
potential for the hidden neurons, b

))/( 1bx1(c
1 e +=ϕ

1, c1 are 
parameters to be optimised using genetic algorithms.  

 
Three data sets with 7000 samples in total was 
examined, among which first data set with 2300 data 
points were used for modelling, and data set 2 with 
2500 data points and data set 3 with 2500 data points 
were used for validation. The statistics of the NOx 
emissions in the three data sets is listed in Table 3.  

Similarly a 5-3-1 ‘eng-genes’ model with the same 
neural inputs was developed and the same GA based 
optimisation platform with same GA operation 
parameters were used. Table 2 compares long-term 
prediction performance of the eng-genes model with 
that of the MLP model. 

 
Again eng-genes models and MLP models were 
developed using the GA-based optimisation software 
with the same GA operation parameters. The long-
term prediction performance of a 6-3-1 MLP model 
and a 6-3-1 eng-genes model is shown in table 4 
with both networks evolved for 50 generations and 
100 generations. The computation time for 
optimising the two networks was almost the same.  

 
Table 2 Long-term prediction performance (RMSE) 

of the ‘eng-genes’ model and the MLP model 
   

  100 
gen 

150 
gen 

Modelling 0.0066 0.0066 MLP 
Validation 0.0063 0.0063 
Modelling 0.0051 0.0049 Eng-

genes Validation 0.0054 0.0050 

Table 3 Statistics of NOx in the two data sets (ppm) 
 

 Min Max Mean STD 
Data set 1 252.90 452.5 306.8 21.9 
Data set 2 198.6 375.0 296.9 20.9 
Data set 3 199.8 342.6 298.7 17.4 



De Soete, G.G., (1975). Overall reaction rates of NO 
and N2 formation from fuel nitrogen. 15th 
Symposium (international) on Combustion, The 
Combustion Institute, 1093-1102. 

Table 4 Long-term prediction performance (RMSE) 
of the ‘eng-genes’ model and the MLP model 

  
  50  

gen 
100 
 gen 

Modelling 15.50 14.50  
MLP Valid-1 16.18 22.32 

 Valid-2  12.34 16.55 
Modelling 15.64 14.35 Eng-

genes Valid-1 13.82 17.67 
 Valid-2 11.91 13.43 

Goldberg, D. E.  (1989). Genetic Algorithms in 
Search, Optimization, and Machine Learning. 
Addison-Wesley Publishing Company, Inc. 

Pearson RK, Pottmann M (2000). Gray-box 
identification of block-oriented nonlinear models. 
Journal of Process Control, 4,  pp. 301-315. 

Psichogios, D.C., and L.H. Ungar (1992). A Hybrid 
Neural Network – First Principles Approach to 
Process modelling. AiChE Journal, 38, pp. 1499-
1511. 

 
The selected neural inputs are θ(t-1), θ(t-2), θ(t-4), 

(t-2),  (t-1), NOfm

1 =ϕ

sam

))1b

x(t-1). The eng-genes 

models optimised by the GAs used 
as the activations function for all 

the three hidden neurons in the network, and non-
Arrhenius’ type ‘eng-gene’ was not 
selected. Fig. 4 and 5 show the long-term predictions 
of the 6-3-1 ‘eng-genes’ model over the modelling 
data set and the validation data set 2 when the model 
was evolved for 50 generations. 

/(x1(ce +

2c
22 )bx += (ϕ

Sohlberg, B (2003). Grey box modelling for model 
predictive control of a heating process. Journal 
of Process Control, 13, pp. 225-238. 

Li, K., S. Thompson and J. Peng (2004). Modelling 
and prediction of NOx emission in a coal-fired 
power generation plant. Control Engineering 
Practice. 12, 707-723.  

Thompson, S. and K. Li (2003). Modelling of NOx 
emission, In: Thermal power plant simulation, 
monitoring and control. (D. Flynn. (Ed)) pp: 
243-268. IEE, London. 

 
 

Tulleken, H. J.A.F. (1993). Grey-box modelling and 
indentification using physical knowledege and 
Bayesian techniques. Automatica, 29, pp. 285-
308. 

4. CONCLUSION 
 
In this paper, a detailed discussion has been made on 
the motivation behind the ‘eng-genes’ genetic 
modelling approach for nonlinear engineering 
systems where the system behaviour is either too 
complex to build a simple model or our knowledge 
about the system is only partially known. The eng-
genes genetic modelling framework has been 
proposed. This modelling method has then been used 
to model two different processes, and it has been 
shown that even simple ‘eng-genes’ models can be 
built to approximate complex nonlinear systems with 
desired long-term prediction performance. 
Moreover, in these two case studies the eng-genes 
used for modelling are all Arrhenius’ type 
exponential functions which are physically 
meaningful therefore the model transparency has 
been significantly improved. Future work will 
include the development of various neural network 
structures for general engineering problems, and 
application of these networks to real time system 
operation and control. 

 

 
 
Fig. 4. Long-term estimation performance of the 
eng-genes model on the modelling data 
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