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Abstract: The purpose of this paper is to set the basis for the study of polynomials
with periodic coefficients. We define first the elementary algebra, and then we
introduce fundamental notions such as those of adjoint polynomial and of zero of
a polynomial. The we pass to periodic systems, for which we touch the problem of
spectral factorization in discrete time. Copyright c©2005 IFAC.
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1. INTRODUCTION

The research activity in periodic control extends
over more than three decades, as witnessed by
the papers presented at the IFAC workshops
on Periodic Control Systems held in Cernobbio-
Como (Italy) in 2001 (Bittanti, Colaneri, 2002)
and in Yokohama (Japan) in 2004 (Katayama,
Sano, 2004). However, not much is known about
periodic polynomials in general, and about the
polynomial approach to the analysis and con-
trol of periodic systems, see (Colaneri, Kucera,
Longhi, 2003), (Mrabet, Bourles, 1998), (Bittanti,
Colaneri, 2004) for early papers. Herein we pro-
pose to define an algebra of periodic polynomials,
and use it for some basic questions, namely the
definition of adjoint polynomial and the charac-
terization of the notion of root (zero). This will
lead to the definition of ”characteristic system”
and ”lifted characteristic equation”. Notice that
this first part of our paper has some connections
with the abstract theory of ideals in polynomial
rings, (Lam, Leroy, 2000). Then we move towards

periodic dynamical systems in discrete time, for
which we treat the problem of spectral factor-
ization. All these topics are of special interest
for the analysis of seasonal time-series, see e. g.
(Luetkepohl, 1993), (Lund, Seymour, 2002).

2. ELEMENTARY ALGEBRA OF PERIODIC
POLYNOMIALS

Denote by pi(t), i = 0, 1, · · ·n, a set of real coef-
ficients evolving periodically in time with period
T , i.e. pi(t + T ) = pi(t), ∀t, and let

p(σ, t) = p0(t)σn + p1(t)σn−1 + · · · pn(t) (1)

be the associated T -periodic polynomial in the
symbol σ, denoting the one-step ahead operator.
In other words, the polynomial p(σ, t) acts as
an operator transforming a time signals v(t) into
another time signal w(t) with the following rule:

w(t) = p(σ, t)v(t) =
n∑

i=0

pi(t)v(t + n− i) (2)



A more precise symbol could have been adopted
in order to stress the operator character of p(σ, t)
(for instance (p ∗ w)(t)). However, for the sake of
simplicity, we will use the above notation through-
out the paper. Furthermore, notice that p(σ, t) is
anticausal in that σ is the one-step ahead shift
operator. The degree of the polynomial is defined
as the T -periodic function ρ(t) given by the power
associated with the maximum-power coefficient
which is non zero at time t. If p0(t) 6= 0, ∀t, then
ρ(t) = n, ∀t, and the polynomial is called regular.
If p0(t) = 1, ∀t, it is said to be monic.

Sum and Product

The sum of two T -periodic polynomials, say p(σ, t)
and

q(σ, t) = q0(t)σn + q1(t)σn−1 + · · · qn(t)

is still a T -periodic polynomial, given by

p(σ, t) + q(σ, t) =
n∑

i=0

(pi(t) + qi(t))σn−i

The definition of product is based on the ful-
filment of the concatenation rule concerning the
subsequent application a two polynomial opera-
tors to a given signal. In this regard, consider first
a generic periodic polynomial and an elementary
polynomial constituted by a power os σ. One
obtains:

[σkp(σ, t)]v(t) = σkw(t) = w(t + k) =

p(σ, t + k)v(t + k) = [p(σ, t + k)σk]v(t)

Therefore, these two polynomials do not com-
mute. Precisely, for any integer k and signal v(t):

[σkp(σ, t)]v(t) = [p(σ, t + k)σk]v(t)

The above property can be written as:

σkp(σ, t) = p(σ, t + k)σk (3)

and is referred to as the pseudo-commutative prop-
erty. Obviously, if k is a multiple of the period,
then σk and p(σ, t) commute.

The product of the two generic polynomials p(σ, t)
and q(σ, t) (of the same degree n) is defined as
follows:

p(σ, t)q(σ, t) =
2n∑

i=0

ri(t)σ2n−i

where

r0(t) = p0(t)q0(t + n)

r1(t) = p0(t)q1(t + n) + p1(t)q0(t + n− 1)
...

r2n−1 = pn−1(t)qn(t + 1) + pn(t)qn−1(t)

r2n(t) = pn(t)qn(t)

The generalization to the product of polynomials
with different degrees is trivial.

The ring of periodic polynomials

Pursuant the previous definitions of sum and
product, the set of T -periodic polynomials forms
a non commutative ring. Obviously, the subset
constituted by the polynomials in the symbol σT

is a commutative ring.

In this ring we define the ”unit” as follows. By
following standard algebraic terminology, a T -
periodic polynomial p(σ, t) is said to be unimodu-
lar if there exists a T -periodic polynomial q(σ, t)
so that for each t,

p(σ, t)q(σ, t) = q(σ, t)p(σ, t) = 1

where 1 denotes the identity operator.

Contrary to the case of constant polynomials,
there might exist unimodular T -periodic polyno-
mials with degree different from zero at some time
point. For instance, the 2-periodic polynomial

p(σ, t) = p0(t)σ + p1(t)

with p0(0) = 0, p0(1) = 1, p1(0) = 1, p1(1) = −1,
is unimodular in that

(p0(t)σ − p1(t + 1))(p0(t)σ + p1(t)) = 1

Notice that the no regular T -periodic polynomial
can be unimodular.

Adjoint polynomial

In order to define the adjoint polynomial, we
preliminarily consider the Hilbert space of real
bounded T -periodic functions, with

< v1, v2 >:=
T−1∑

t

v1(t)v2(t)

as inner product. Correspondingly, the norm of a
periodic signal v is defined as

‖v‖22 =< v, v >:=
T−1∑
t=0

v(t)2

The inner product above defined induces the defi-
nition of adjoint polynomial p∼(σ, t) of a given T -
periodic polynomial p(σ, t). The adjoint operator
is defined so as to meet the condition that, for
any pair of periodic signals v and w, the following
inner products coincide:

< p(σ, t)v, w >=< v, p∼(σ, t)w >



Therefore, by exploiting the signal periodicity:

< p(σ, t)v, w >=
T−1∑
t=0

n∑

k=0

pk(t)v(t + n− k)w(t)

=
T−1∑
t=0

n∑

k=0

v(t)pk(t− n + k)w(t− n + k)

so that,

p∼(σ, t)w(t) =
n∑

k=0

pk(t− n + k)w(t− n + k)

This means that, the adjoint polynomial is:

p∼(σ, t) = σ−np0(t) + σ−n+1p1(t) + · · ·+ pn(t)

Obviously, σ−1 is the one-step delay operator.
In view of the pseudo-commutative property, the
adjoint operator can be equivalently rewritten as

p∼(σ, t) = p0(t− n)σ−n + p1(t− n + 1)σ1−n +

p2(t− n + 2)σ2−n + · · ·+ pn(t)

The action of this polynomial in σ−1 on a signal
v(t) is as follows:

w(t) = p∼(σ, t)v(t) = p0(t− n)v(t− n) +

+ p1(t− n + 1)v(t− n + 1) + · · ·+ pn(t)v(t)

Characteristic equation and zeros

For a T -periodic polynomial, the notion of zero
can be introduced by making reference to a ”peri-
odic signal blocking property” as follows. Consider
the polynomial as a filter fed by a periodic signal,
say ȳ(t), of the same period of the coefficients.
The zeros of the polynomial correspond to those
situations for which the output of the filter is zero.
Precisely, for a given (real or complex) λ, consider
the following equation:

p(λσ, t)ȳ(t) =
n∑

i=0

pi(t)λn−iȳ(t + n− i)

By writing this equation for t = 0, 1, · · · , T −
1 we obtain a system of T equations in T + n
unknowns ȳ(0), ȳ(1), · · · , y(T + n − 1). Restrict
now the attention to T -periodic functions ȳ(·).
By imposing periodicity, such system (referred to
as characteristic system) becomes a system of T
equations in the T unknowns ȳ(0), ȳ(1), · · · , y(T−
1). It can be written in the form A(λ)y = 0 where
y is the vector of the values ȳ(0), ȳ(1), · · · , y(T−1).
Obviously, the system admits a nontrivial solution
if and only if the det[A(λ)] = 0. The equation
det[A(λ)] = 0, referred to as lifted characteristic
equation, has a distinctive feature: due to the
peculiar structure A(λ), only powers of λT appear

in the det[A(λ)]. Therefore the lifted characteristic
equation admits n real or complex solutions λT .

The solutions (in λT ) of the lifted characteristic
equation are named zeros of the periodic poly-
nomial p(σ, t). Therefore a regular n-degree T -
periodic polynomial admits n zeros, as in the time-
invariant case. If T = 1 (time-invariant poly-
nomial) the definition of zero and characteristic
equation now given reduce to the well known
standard definitions.

Finally, observe that the zeros of the adjoint
polynomial are the reciprocals of the zeros of the
original one.

Lifted periodic polynomials and zeroes

Given a T -periodic polynomial p(σ, t), the associ-
ated lifted polynomial P (σT , t) is a T ×T polyno-
mial matrix, with T -periodic coefficients, uniquely
defined by the condition

P (σT , t)




1
σ
...

σT−1


 =




1
σ
...

σT−1


 p(σ, t) (4)

A number of basic properties of the lifted polyno-
mial are in order:

(i) Time-recursion of P (σT , t)
For any given T -periodic polynomial p(σ, t),
the associated lifted polynomial matrix P (σ, t)
satisfies the following recursive formula:

P (σT , t+1) =
[

0 IT−1

σT 0

]
P (σT , t)

[
0 σ−T

IT−1 0

]

An important consequence of the recursive for-
mula is that the determinant of a lifted polyno-
mial matrix is a polynomial in the powers of σT

with constant coefficients, i.e.

det[P (σT , t)] = p̄(σT ), independent of t

This allows one to properly define the zeros of
a T -periodic polynomial p(σ, t) as the roots of
det[P (σT , t)]. Obviously, contrary to the case of
constant coefficient polynomials, one can con-
struct infinitely many T -periodic monic poly-
nomials with the same set of zeros.

This definition of zeros of a periodic polyno-
mial is equivalent to the one previously given.
Indeed, it can be easily proven that

P (λT , 0) = ∆A(λ)∆−1

where ∆ = diag{1, λ, · · · , λT−1} and A(λ) is the
matrix previously defined. Hence,

det[P (λT , 0)] = det[A(λ)]



(ii) Upper-triangularity of P (0, t)
Another significant property of a lifted poly-
nomial matrix P (σT , t) is that P (0, t) is upper
triangular for each t in the period. Indeed,

P (0, t) =




∗ ∗ · · · ∗
0 ∗ · · · ∗
...

...
. . .

...
0 0 · · · ∗


 , ∀t

The set of T -periodic polynomial matrices in
σT satisfying the recursion in point (i) and the
upper triangularity condition in point (ii) is in
one-to-one correspondence with the set of T -
periodic polynomials. Precisely, given a T pe-
riodic polynomial p(σ, t), the lifted T -periodic
polynomial matrix is uniquely defined through
(4). Conversely, given a lifted polynomial ma-
trix, i.e. a T -periodic polynomial matrix in σT

satisfying the recursion in point (i) and the
upper triangularity condition in point (ii), the
T -periodic polynomial can be computed as

p(σ, t) =
[
P (σT , t)

]
(1)




1
σ
...

σT−1




where [P (σ, t)](1) denotes the first row of
P (σ, t). This expression is an obvious conse-
quence of (4). Of course, the set of lifted polyno-
mials is closed with respect to the sum and the
product. This means that the lifted polynomial
associated with the sum or the product of two
T -periodic polynomials p1(σ, t) and p2(σ, t) is
given by the sum or, respectively, the prod-
uct of the two lifted polynomials P1(σT , t) and
P2(σT , t). This claim is easily verified and the
details are therefore omitted.

3. RATIONAL PERIODIC OPERATORS

In this section we introduce the notion of rational
operator with periodic coefficients. For, consider
the formal power series in the symbol σ−1:

g(σ, t) =
∞∑

i=0

gi(t)σ−i (5)

where gi(t) are T -periodic coefficients.

This formal series can be seen as an operator
which processes a time-signal to supply another
time-signal. From this viewpoint, σ−1 is intended
to be the unit delay operator. Accordingly, g(σ, ·)
is a causal operator. One can rewrite (5) as follows

g(σ, t) =
T−1∑

k=0



∞∑

j=0

gk+jT (t)σ−jT


 σ−k (6)

We say that g(σ, t) is rational if the functions

ĝk(σT , t) =
∞∑

j=0

gk+jT (t)σ−jT (7)

are rational in σT , for each t in the period. If this
is the case, it is possible to write

ĝk(σT , t) =
n̂k(σT , t)

d̂k(σT , t)
(8)

Recall now that the symbol σT commutes with T -
periodic functions. This means that it is possible
to perform the product of the functions d̂k(σT , t)
and n̂k(σT , t) in any possible order. Letting

d̄(σT , t) =
T−1∏

k=0

d̂k(σT , t)

n̄i(σ, t) =
T−1∏

k 6=i,k=0

d̂k(σT , t)n̂i(σT , t)

it follows that g(σ, t) can be written as

g(σ, t) = dL(σ, t)−1nL(σ, t) = nR(σ, t)dR(σ, t)−1

where

dL(σ, t) = σT−1d̄(σT , t)

nL(σ, t) =
T−1∑

i=0

n̄i(σT , t + T − 1)σT−1−i

dR(σ, t) = d(σ, t)σT−1

nR(σ, t) =
T−1∑

i=0

n̄i(σT , t)σT−1−i

Therefore, a causal rational operator f(σ, t) can
be written in the above left or right factorized
form, where the four polynomials obviously satisfy

dL(σ, t)nR(σ, t) = nL(σ, t)dR(σ, t)

and, moreover, the degree of dL(σ, t) (dR(σ, t)) is
greater than that of nL(σ, t) (nR(σ, t)), for each t.

Example 3.1. Consider the periodic polynomials
of periodic 3:

a(σ, t) = a0(t)σ2 + σ − 2, b(σ, t) = b0(t)σ

where a0(0) = a0(1) = 0, a0(2) = 1, b0(0) = 1,
b0(1) = 0, b0(2) = 2. Now consider the rational
left factorized operator

g(σ, t) = a(σ, t)−1b(σ, t) = c(σ, t)d(σ, t)−1



In order to find c(σ, t) and d(σ, t) one has to solve

a(σ, t)c(σ, t) = b(σ, t)d(σ, t)

where, in order to match the polynomial degrees,

d(σ, t) = d0(t)σ2 + d1(t)σ + d2(t)

c(σ, t) = c0(t)σ + c1(t)

Therefore c1(t) = 0 and

a0(t)c0(t + 2) = b0(t)d0(t + 1)

a0(t)c1(t + 2) + c0(t + 1) = b0(t)d1(t + 1)

c1(t + 1)− 2c0(t) = b0(t)d2(t + 1)

One feasible solution of this system is

c(σ, t) = c0(t)σ, d(σ, t) = d1(t)σ + d2(t)

where c0(1) = c0(2) = 0, c0(0) = 1, d2(0) =
d2(2) = 0, d2(1) = −2, d1(0) = 0.5, d1(1) =
d1(2) = 0.

It is also important to point out that if the
polynomial at the denominator is not regular, the
system may not be properly causal even if the
degree of the denominator is not smaller than that
of the numerator for each t. The following example
clarifies this issue.

Example 3.2. Consider a 2-periodic system with
transfer operator

g(σ, t) = (p0(t)σ + 1)−1

where p0(0) = 0, p0(1) = 1. The denominator
degree fluctuates periodically between 0 and 1,
whereas the numerator has constant degree equal
to zero. Notice that the denominator is unimodu-
lar so that it does not possess finite singularities.
This implies that the transfer operator does not
correspond to a proper dynamical system. To see
this, it suffices to left-multiply both sides of

(p0(t)σ + 1)y(t) = u(t)

by po(t)σ−1, so that y(t) = −p0(t)u(t+1)+u(t).
This is not a dynamical system since the output
at odd time points depends on the value of future
inputs.

It is obviously possible to define the concept of
the adjoint of the rational operator

g(σ, t) = dL(σ, t)−1nL(σ, t) = nR(σ, t)dR(σ, t)−1

as

g∼(σ, t) = n∼L (σ, t)d∼L (σ, t)−1 = d∼R(σ, t)−1n∼R(σ, t)

A T -periodic rational operator f(σ, t) can be given
a lifted reformulation, induced by the reformula-
tion already defined for polynomials. Indeed, it is
easy to show that the rational transfer matrix

G(σT , t) = DL(σT , t)−1NL(σT , t)

= NR(σT , t)DR(σT , t)−1

is the so-called lifted system at time t, where,
as obvious, DL(σT , t), NL(σT , t), NR(σT , t) and
DR(σT , t) are the lifted reformulation of the T -
periodic polynomials dL(σ, t), nL(σ, t), nR(σ, t)
and dR(σ, t), respectively. As already pointed out,
the matrix G(σT , t) is constituted by rational
functions in σT . However, recall that all matrices
DL(σT , t), NL(σT , t), NR(σT , t) and DR(σT , t)
have constant determinants.

From the lifted reformulation it becomes clear
whether a T -periodic transfer operator G(σ, t)
corresponds to a dynamical system: this happens
when its lifted reformulation G(σT , t) corresponds
to a time-invariant proper dynamical system.

Example 3.3. Consider again the transfer opera-
tor defined in Example (3.2). Then,

D(σ2, t) =
[

1 p0(t)
p0(t + 1)σ2 1

]
, N(σ, t) = I2

and the lifted transfer function is

G(σ2, t) =
[

1 −p0(t)
−p0(t + 1)σ2 1

]

Matrix G(σ2, 0) is the transfer function from the
lifted input signal u0

L(k) = [u(2k) u(2k + 1)]′ to
the lifted output signal y0

L(k) = [y(2k) y(2k + 1)]′.
As apparent, G(σ2, 0) is a polynomial matrix, so
that g(σ, t) does not correspond to any T -periodic
dynamical systems.

4. SPECTRAL FACTORIZATION

The problem of spectral factorization can be
stated as follows. Let a T -periodic rational oper-
ator γ(σ, t) be given, and assume that it satisfies
the assumptions that

γ∼(σ, t) = γ(σ, t), γ(σ, t) > 0

Therefore, the rational operator γ is auto-adjoint.
Then, the problem consists in finding a minimum
factor of γ(σ, t), i.e a T -periodic rational operator
ĝ(σ, t), stable with stable inverse and such that

ĝ(σ, t)ĝ∼(σ, t) = γ(σ, t)

This problem is complicated in the periodic case,
since the ring of scalar rational operators is not
commutative. Of course, in the state space frame-
work, one can resort to the theory related to the
use of periodic Riccati equations.

When a factor g(σ, t) is already given, the problem
of spectral factorization consists in finding a sta-



ble, with stable inverse, transfer operator ĝ(σ, t)
such that

ĝ(σ, t)ĝ∼(σ, t) = g(σ, t)g∼(σ, t)

This means that g(σ, t) and ĝ(σ, t) share the same
spectral properties. Of course, it is possible to
perform the spectral factorization iff the given
system does not have zeros or poles on the unit
circle. As for the computation of a spectral factor,
at least in the scalar case, one can resort to oper-
ator manipulations, as illustrated in the example
below.

Example 4.1. Consider the system with the ratio-
nal T -periodic operator with period T = 2:

g(σ, t) = (σ + a(t))−1

and assume that the system is unstable, i.e.
a(0)a(1) ≥ 1. We want to find a rational T -
periodic operator ĝ(σ, t) such that

g∼(σ, t) = (σ−1 + a(t))−1

This factor must be stable, invertible, with stable
inverse. To this end, a parametric form reflecting
these requirement is

ĝ(σ, t) = (σ + b(t))−1c(t)σ

with |b(0)b(1)| < 1. Simple computations show
that

c(t) =
1

a(t)

√
1 + a(t)2

1 + a(t + 1)2
, b(t) = a(t)c(t)2 (9)

Notice that c(0)c(1) = b(0)b(1) = (a(0)a(1))−1.

The spectral factorization is very useful to solve
the so-called Wiener filtering problem. Assume
that w1 and w2 are white independent gaussian
noises with unit covariances, and consider a T -
periodic system described by the transfer operator
g(σ, t) and output y. Moreover, denote by s the
to-be estimated signa, i.e.

y = g(σ, t)w1 + w2, s = g(σ, t)w1

an estimate
ŝ = f(σ, t)y

such that the covariance of the error s − ŝ is
minimized. This correspond to the H2 filtering
problem in the deterministic setting. The solution
can be easily given a closed-loop formula by usual
spectral factorization and square completing. It
turns out that the optimal filter is

fott(σ, t) =
[
h(σ, t)− (h∼(σ, t))−1

]
s
h(σ, t)−1

where [·]s denotes the stable proper part and
h(σ, t) is a stable, invertible, with stable inverse
factor of [g(σ, t) 1], i.e.

h(σ, t)h∼(σ, t) = g(σ, t)g∼(σ, t) + 1

Since h(σ, t)−1 is stable, (h∼(σ, t))−1 is unstable
and its stable part corresponds to the direct input-
output term. Hence, denoting this term as γ(t), it
follows that

fott(σ, t) = 1− γ(t)h(σ, t)−1

5. CONCLUSIONS

This paper contributes to periodic control theory
with a view towards the polynomial approach
(in discrete time) in the solution of the spectral
factorization and Wiener filtering problems.
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