
   

 

 
 
 
 
 
 
 
 
 
 
 

STATE DEPENDENT SWITCHING CONTROL FOR INVERTED PENDULUM  
SYSTEM 

 
 

Satoko YAMAKAWA1, Atsushi YAMADA2 and Hideo FUJIMOTO2 
 
 

1 Dept. of System Robotics, Toyo University, 2100 Kujirai, Kawagoe 350-8585, Japan 
yamakawa@eng.toyo.ac.jp 

2 Dept. of Computer Science and Engineering, Nagoya Institute of Technology 
Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan 

 
 
 
 

Abstract: A switching control strategy for inverted pendulum systems is proposed 
based on the energy function and its transitions. We deal with a simplified second 
order model of cart-pendulum systems. Assume a virtual energy whose potential 
energy has an opposite sign. Paying attention to the motions of the pendulum, the 
energy changes are analyzed theoretically. According to these analyses, the conditions 
of a simple switching controller are derived and the stability of the switching 
controlled system is guaranteed. The role of the parameters in controllers is examined 
in numerical simulations. Copyright© 2005 IFAC  
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1.  INTRODUCTION 
 
The control design based on the Lyapunov stability 
theory has often been used for stabilizing nonlinear 
systems. In these approaches, mechanical energy of 
systems is a useful candidate of Lyapunov functions 
because it helps us to intuitively recognize the 
physical characteristics of controlled behavior (e.g., 
Bloch, Chang, Leonard and Marsden(2001), Angeli 
(2001)). However, the design processes of 
continuous controllers often become comparatively 
complex because of the nonlinearity of the system, 
and obtained nonlinear controllers mostly become 
complex. On the contrary, by using the switching 
process in control, simple controllers for inverted 
pendulum systems, which are nonlinear systems, 
have been proposed (Åström and Furuta(2000), 
Shiriaev, Egeland and Ludvigsen(1998), Liberzon 
(2003)). These controllers swing the pendulum back 
and forward so that the mechanical energy of the 
pendulum increases. In many methods, two 
controllers are switched for the swinging-up phase 
and the stabilization phase. Therefore, another 
difficulty appears: when should the controllers be 
switched? 

 
In this paper, a comparatively simple switching 
control law for inverted pendulum system is 
proposed. In the proposed method, the controllers are 
switched according to the angle of the pendulum. The 
pendulum goes to the lowest position due to gravity 
when control is not applied. Therefore, we assume a 
virtual energy function obtained reversing the sign of 
potential energy. This function becomes smallest 
when the pendulum remains stationary at the upright 
equilibrium. If there were controllers to always 
decrease this function, the states would converge to 
the upright equilibrium. However, there are not 
unbounded continuous control inputs which always 
decrease this virtual energy function. Consequently, 
the stability of the controlled system will be 
guaranteed by focusing on the typical modes of 
motion: rotation, swinging motion and convergence. 
The transitions of energy function are analyzed 
theoretically and the conditions of switching control 
law are clarified. In practically use, this switching 
control law can be used without consideration of 
transitions among these modes of motion and does 
not require the calculation of the energy function or 
another function for input switching. The simplest 



   

 

controllers are shown and the influences of the gain 
parameters on system behavior are investigated in 
numerical simulations. 
 
 
2. DEFINITIONS AND THE MODEL OF SYSTEM 
 
Consider the simplified inverted pendulum system 
described in Åström and Furuta(2000) and others. 
The equation of motion for this system is given as  
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where θ is an angle between the pendulum and the 
vertical axis, g is the acceleration of gravity, m is the 
mass of the pendulum, l is the length of a rod from 
the pivot point to the center of mass, and J is the 
moment of inertia with respect to the pivot point. The 
external control force is horizontally applied at the 
pivot point. This force implies the acceleration of cart 
in the case of cart-pendulum systems. As described in 
Åström and Furuta(2000), the equation of motion (1) is 
normalized by introducing τJmglt /= , u=v/g. 

0cossin =+− θθθ u&& , (2) 
where 22 / dtd θθ =&& . The total mechanical energy of 
this system, which consists of kinetic energy and 
potential energy, is obtained as, 
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where dtd /θθ =& . The purpose of this study is to 
stabilize the pendulum at the upright equilibrium. 
Therefore, the following definitions are used in this 
paper. 
 
Definition 1  The upright equilibriums are the states 
such that  

1cos,0 == θθ& . (4) 
Definition 2  The pendent equilibriums are the states 
such that  

1cos,0 −== θθ& . (5) 

Definition 3  The inverted pendulum system (2) is 
asymptotically stable when almost all states except 
the pendent equilibriums converge to any one of the 
upright equilibriums, i.e., 
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are satisfied. 
 
 

3. PROPOSED SWITCHING CONTROL LAW 
 
When applying inputs decreasing the energy of 
system (2), the pendulum is stabilized at the pendent 
equilibrium, where the potential energy becomes the 
minimum. Paying attention to this fact, we assume a 
virtual energy which is obtained if gravity worked in 
the opposite direction. Moreover, the pendulum will 
be stabilized at the upright equilibrium if control 
inputs are applied to decrease this virtual energy. 
Thus, in this paper, we suppose the following 
function Ed which is obtained by reversing the sign of 

potential energy in equation (3). 
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The time-derivative of Ed is obtained as 
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The derivative dE&  is controlled by the control input u 
on the right-hand side of (8). However, dE&  cannot be 
controlled when θ& =0 or cosθ =0, because the 
coefficient of u becomes 0. 
 
The upright equilibriums defined as Definition 1 are 
not only one. That is, all states satisfying θ =±2nπ, 
n=0, 1, 2, … are candidates for the upright 
equilibriums. Therefore, in this study, we confine 
control inputs to the class satisfying 

u(θ )= u(θ +2π ). (9) 
The feedback controllers satisfying (9) perform the 
same role in the neighborhoods of any upright 
equilibrium. From this fact, the controlled system has 
a possibility of stabilizing the pendulum at an 
appropriate upright equilibrium among θ =±2nπ, n=0, 
1, 2,… according to the initial states. As a class of 
control inputs satisfying (9), we choose the inputs as 

u = 2F(θ )sinθ, (10) 
where F(θ ) is a bounded function and F(θ )= 
F(θ +2π ). Applying (10) to (8), we obtain 

)cos)(1(sin2 θθθθ FEd −= && . (11) 

In order to satisfy dE& ≤0, we have to determine the 
function F(θ) so that (1-F(θ)cosθ) has the opposite 
sign of θθ sin& . When θθ sin& <0, it is appropriate to 
select the function F(θ) such that 

F(θ)cosθ ≤1,  for θθ sin& <0. (12) 

On the other hand, when θθ sin& ≥0, the conditions 
for dE& ≤0 is rewritten as 

F(θ)cosθ ≥1,  for θθ sin& ≥0. (13) 

There are no bounded functions F(θ) satisfying (13) 
at the points where cosθ=0. Therefore, we propose 
the controllers satisfying conditions (12) and (13) in 
as wide a range as possible. Moreover, outside of this 
range, the controller is switched to 0 taking into 
consideration the conditions for finite inputs. To 
summarize, a proposed switching law of the function 

 

 

 

 

 

 

 

 

 

cosθ = δ 
u(θ)=2f2(θ)sinθ

u(θ)=2f1(θ)sinθ

u(θ)=0 

cosθ = 1 

 
Fig. 1 Input switching in clockwise rotation 



   

 

F(θ) is described as follows. 
 f1(θ) if  θθ sin& <0 

F(θ ) = f2(θ) if  θθ sin& ≥0,  cosθ >δ (14) 

 0 if  θθ sin& ≥0,  cosθ≤δ 

where 0<δ<1, f1(θ)cosθ ≤ 1 for ∀θ and f2(θ)cosθ ≥1 
for cosθ >δ. Furthermore, the points where 
f1(θ)cosθ=1 or f2(θ)cosθ =1 are at most finite points 
in the range of -π < θ < π. 
Since dE&  has a positive sign when F(θ )=0, the 
global stability cannot be discussed by using Ed as a 
candidate of the Lyapunov function. In the next 
section, stability is discussed by focusing on the 
characteristic motion modes of pendulum systems 
and investigating the change of Ed. 
 
 
4. PARAMETER CONDITIONS FOR STABILITY 
 
Motions of system (2) from arbitrary states θ=(θ, θ& ) 
are divided into two motions: the pendulum makes a 
full rotation through θ ±2nπ, and the pendulum stops 
before making a full rotation. The latter is a swinging 
motion such that the motion direction is reversed due 
to gravity whenever the pendulum stops. Since 
system (2) has no friction, the total mechanical 
energy (3) is kept when u =0. In this case, motion of 
the system depends only on initial states and the 
pendulum repeats eternally either rotations or 
swinging motions, or remains stationary at the 
equilibrium points. In this section, transitioning the 
motion modes of the pendulum as shown in Fig. 2, 
the conditions for stabilization are derived using a 
switching control law proposed in the previous 
section. 
 
Using switching control law (10)(14), an invariant set 
(Bacciotti and Rosier(2001)) appears in the 
neighborhood of each upright equilibrium. 
 
Lemma 1  Applying switching control law (10)(14) 
to system (2), O={θ |Ed<-δ} is an invariant set. □ 
Proof  Let θ ∈O at t=0. Then, cosθ >δ because the 
states satisfy Ed <-δ. In such case, control input 
function F(θ ) is f1(θ) or f2(θ). Since the input 
functions f1(θ) and f2(θ) satisfy conditions (12) and 
(13) and dE& ≤0, it is evidently satisfied that Ed <-δ, 
i.e., θ ∈O, for t ≥0. ■ 
 

From the LaSalle’s invariance principle, the 
following lemma is obtained. 
 
Lemma 2  Applying switching control law (10)(14) 
to system (2), arbitrary states in the invariant set O 
converge to an upright equilibrium if f1(θ)cosθ > 1/2 
for θ ∈O. □ 
Proof  From LaSalle’s invariance principle, the states 
in θ ∈O converge into the largest invariant set 
contained in N={θ ∈O | dE& =0}, because dE& ≤0 (Imura 
(2000)). Therefore, we shall show that the largest 
invariant set consists of only the upright equilibriums. 
From equation (11), N is easily rewritten as 

N={θ ∈O |θ& =0}∪{θ ∈O | sinθ=0}∪ 

     {θ ∈O | F(θ )cosθ =1}. (15) 
Under the conditions that the points where 
F(θ )cosθ =1 are at most finite points, the states θ  in 
the set {θ | F(θ )cosθ =1} are discrete points and are 
not continuous points. Thus, the states in invariant 
sets contained in the set N surely satisfy θ& ≡0. It is 
required for θ& ≡0 to satisfy 0=θ&& . Namely, from 
equation (2), it is necessary that the right-hand side 
of the following equation becomes 0. 

)cos)(21(sin θθθθ F−=&&  (16) 

Since this condition is satisfied when sinθ=0, the set 
{θ | sinθ=0, θ& =0} is the invariant set. On the other 
hand, the set {θ | F(θ)cosθ=1, θ& =0} is not the 
invariant set, because 0≠θ&& . 
 
Furthermore, when using the switching control, there 
is a possibility that the states remain on the switching 
surfaces by switching indefinitely between different 
control modes.  This phenomenon is called livelock 
(van der Shaft and Schumacher(2000)). If the states 
satisfy 0≤θθ &&&  after the input function is switched 
from f2(θ) to f1(θ), then the pendulum cannot escape 
from the switching point which is not the upright 
equilibrium and livelock occurs. From equation (2), 

θθ &&&  is obtained as follows. 
2,1),cos)(21(sin =−= ifi θθθθθθ &&&&  (17) 

Using f1(θ), θθ &&&  is positive when f1(θ)cosθ >1/2. 
Therefore, the states escape from the switching 
points if f1(θ)cosθ >1/2. Furthermore, livelock never 
occurs on the other switching surfaces except the 
upright position.  ■ 
 
From the above-mentioned, the following theorem is 
obtained in the neighborhood of the upright 
equilibrium. 
 
Theorem 1  Assume that f1(θ)cosθ >1/2 for θ ∈O. 
Then, the states of system (2) with (10)(14) converge 
to the upright equilibrium if Ed <-δ is satisfied once.□ 
Consider the case where the states are outside of the 
invariant set O described in Lemma 1. In this case, 
the pendulum rotates or swings. We consider the 
conditions for decreasing energy Ed. From the form 
of the time-derivative dE&  given as (11), the change of 

 

Swing-up Rotation 

Initial state 

 The upright equilibrium 

Ed < -δ 

 
Fig. 2 Illustration of motion modes and state 

transitions by proposed method 



   

 

energy E12 when the angle of the pendulum changes 
from θ1 to θ2 is calculated regardless of the angular 
velocity. 
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First, the energy change through a full rotation Ea as 
shown in Fig. 1 is calculated. Since the energy 
change depends only on the angle, assume that θ1=0, 
and θ2=2π without loss of generality. The energy 
change Ea is obtained as 
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 (19) 
Consequently, the following conditions are derived. 
 
Lemma 3  Using switching control law (10)(14), 
system (2) is asymptotically stable only if  
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is satisfied. □ 
Proof  Assume Ea≥0 and consider the initial states 
such that cosθ=δ, θθ sin& ≥0 and Ed>1. Then, if the 
pendulum makes a full rotation without satisfying 
θ& =0, |θ& | does not become smaller than the initial 
value because Ea≥0. Furthermore, from condition (9), 
the pendulum repeats the rotations and | θ& | never 
decreases. Therefore, to satisfy θ& =0 before a full 
rotation is required so that the states converge to the 
upright equilibriums. However, using switching 
control law (10)(14), the energy increases from this 
initial state to the lowest position, and then decreases 
as shown in Fig. 3. Under the assumption of Ea≥0, 
the energy during a full rotation satisfies Ed >1 and 
θ& never becomes 0. Namely, the pendulum cannot 
stabilize at the upright position from the initial state 
if Ea≥0. Therefore, condition (20) implying Ea<0 is 
required. ■ 
 
Next, swinging motions are considered. Assume that 
the angular velocity θ&  becomes 0 when θ=θ1 and 
θ=θ2. When θ ∉O at θ=θ1, cosθ1<δ. Thus, the input 
function F(θ) is switched to 0 at θ=θ1. The pendulum 
goes downward and the control function is switched 
to f1(θ) at the lowest point. Noticing that the energy is 
-cosθ when θ& =0, the following equation concerned 
with the energy change from θ1 to θ2 is obtained.  
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This equation indicates that θ2 is closer to the upright 
position than θ1 if the energy change ΔE  

θθθ
θ

π
dfE ∫=Δ 2 2sin)(1
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is negative. The following lemma concerned with ΔE 
is obtained. 
 
Lemma 4  Using switching control law (10)(14), 
system(2) is asymptotically stable only if  

02sin)(2
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df  (23) 

is satisfied for all θ2 satisfying (21) for -1<cosθ1<δ. □ 
Proof  Assume ΔE≥0 when -1<cosθ1≤ε, ε<δ. Τhen, 
the pendulum never reaches an upright position from 
the initial state such that -1<cosθ ≤ε, θ& =0. Therefore, 
ΔE<0 is required for asymptotic stabilization for -1< 
cosθ1≤ε. Furthermore, assume that the pendulum 
reaches an upright position when ΔE<0 for -1< 
cosθ1≤ε and ΔE≥0 for ε<cosθ1<ε'. Then, there is γ1≥0 
so that the pendulum swings up from cosθ1=ε-γ1, 
θ& =0 to cosθ2=ε' without stopping. Under this 
condition, consider the initial state such that 
cosθ1=ε+γ2 <ε', θ& =0. Then, in the range where cosθ  
changes from ε-γ1 to ε' through –1 as shown in Fig. 4, 
the energy is the larger of 2(γ1+γ2) than the energy of 
the motion from cosθ1=ε-γ1. Therefore, the 
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Ed

 0>dE&  0≤dE&  

Ea>0 

The upright state 
The initial state 

0=θ& if Ed=-cosθ

 
Fig. 3 Energy transition in the proof of Lemma 3 
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Fig. 4 Illustration of pendulum motion in the 

proof of Lemma 4 
 
 

 

 

 

 

 

 

 

 

 cosθ =α, 
  0=θ&  

 cosθ <δ 
 cosθ = δ, 
  0≥θ&  

 0≥θ&

cosθ >δ 

a) Lemma 5 b) Lemma 6 

Fig. 5 Illustrations of pendulum motion in the 
proofs of Lemmas 5 and 6 



   

 

assumption is contradicted because the pendulum 
swings up to cosθ=ε'. Namely, it is required that  
ΔE<0 for all θ1 such that -1<cosθ1<δ. ■ 
 
The following lemmas concerned with transitions 
between rotations and swinging motions are obtained. 
 
Lemma 5  Assume that Lemma 4 is satisfied. Then, it 
is not satisfied that 0O, =∉ θ&θ  after a full rotation 
of the pendulum. □ 
Proof  In a full rotation motion, the input is switched 
to 0 when the pendulum goes downward through the 
point where cosθ =δ. Then, the pendulum evidently 
reaches to the lowest position without stopping. 
Therefore, the pendulum swings up to a higher 
position than the position where cosθ =δ because 
Lemma 4 is satisfied. Namely, the pendulum never 
stops in the range where cosθ ≤δ, after a full rotation 
as shown in Fig. 5a). ■ 
 
Lemma 6  Assume that Lemma 3 is satisfied. Then, 
the pendulum never makes a full rotation after 

0O, =∉ θ&θ . □ 
Proof  Assume that θ&  becomes 0 with the point 
where cosθ=a, δ>a. Then, the input is switched to 0 
and the pendulum goes downward. Assume again 
that the pendulum reaches the position where 
cosθ=δ  via the lowest and the upright positions as 
shown in Fig. 5b). Then, the energy at the position 
where cosθ=δ is obtained as follows, taking into 
account Ea<0 from Lemma 3 and δ > a. 
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This inequality implies that the energy becomes 
smaller than the allowable minimum value -δ at this 
angle. Namely, θ&  becomes 0 before the pendulum 
reaches this angle. ■ 
 
Under the conditions described in the above lemmas, 
the states of the system transition as shown in Fig. 2. 
Therefore, the following theorem is obtained.  
 
Theorem 2  Assume that f1(θ), f2(θ ) and δ satisfy the 
conditions in Theorem 1 and Lemmas 3, 4. Then, 
applying switching control law (10)(14), controlled 
system(2) is asymptotically stable. □ 
Proof  When Lemmas 3 and 4 are satisfied, 
transitions between swinging and rotation motion 
modes never occur. Therefore, the energy Ed 
decreases by repeating one of these motions and then, 
Ed surely becomes smaller than -δ. From Theorem 1, 
the states converge to the upright equilibriums. ■ 
 
Remark The pendulum actually rotates decreasing its 
kinetic energy when an initial angular velocity is 
comparatively large. On the other hand, the 
pendulum swings up by increasing its potential 
energy when the initial angular velocity is small. In 

addition, in this case, the pendulum is attracted to the 
neighborhood of the upright equilibrium without 
redundantly increasing the energy. 
 
 

5. SIMPLE CONTROLLERS 
 
5.1 The simplest class of switching controllers 
Simple controllers satisfying the above-mentioned 
conditions are shown. At first, let the functions f1(θ) 
and f2(θ) be constant gains k1 and k2, respectively. 
Since the infimum of k1cosθ in the range of θ ∈O is 
k1δ, the conditions in Lemma 2 are calculated as, 

k1δ >1/2. (25) 
On the other hand, the conditions in Lemmas 4 is 
calculated as 

k1(1-cos2θ2 )<0. (26) 
Condition (26) indicates k1<0, because (1-cos2θ2) is 
always nonnegative. This condition conflicts with 
condition (25). Namely, there is no parameter k1 
simultaneously satisfying all conditions in Theorem 2, 
in the case of fi(θ) =ki, i=1,2. 
 
Next, let functions f1(θ) and f2(θ) be trigonometric 
functions. Assume kisin(θ), i=1, 2. Then, there is no 
k2 satisfying 

k2 sin θ cos θ  ≥1 (27) 
when θ =0. Thus, the conditions for (14) are not 
satisfied. 
 
Therefore, we assume the functions kicos(θ), i=1, 2 
as F(θ). The conditions are represented as follows. 

k2δ 2≥1, 1≥k1 (28) 
k1>1/(2δ 2) (29) 
k2(1-δ 3)-2 k1>0 (30) 
-k1(1+cos3θ2 )<0 (31) 

Reducing these equations, the conditions for 
stabilization are simplified as,  

1322221 1
2and1,

2
11 kkkk

δδδ −
>≥>≥ . (32) 

We can easily find the parameters k1, k2 satisfying 
(32). From the first inequality in (32), the conditions 
of a switching surface are obtained as δ > 2/1 . 
 
The maximum value of input u is 2

2max 12 δδ −= ku  
when cosθ=δ. Under condition (32) of parameters k1, 
k2, the maximum input umax has lower bound as, 
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2

max δδ
δ

−
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The parameter minimizing this lower bound of umax is 
obtained as δ =0.7625 from a derivation of the right-
hand side of (33). The lower bound of umax is 3.048 
when k1=0.860 and k2=3.090. 
 
5.2 Simulation results 



   

 

Simulation results in the case of δ= 2/3  are shown 
in Figs. 6 and 7. Condition (32) indicates that 
1≥k1>2/3 and k2≥5.706k1 when δ= 2/3 . k2 is chosen 
as 6.0. The differences of behaviors from the initial 
values θ =0.99π [rad] and θ& =0.0 [rad/s] are 
compared in changing k1 in 0.70, 0.80 and 0.90. In 
this case, the pendulum swings up early on as shown 
in Fig. 6a). In Fig. 7a), the points where the energy 
trajectories contact with the curve Ed=-cosθ indicate 
the points where the kinetic energy becomes 0 and 
the pendulum motion stops. The energy in these 
points decreases in proportion to k1. As k1 is larger, 
angular velocity becomes larger early on and the 
pendulum swings up to higher positions. When the 
pendulum does not swing up to a sufficiently high 
position, for example at t=3.0[s], the input is 
switched to 0. The pendulum goes through the lowest 
position and swings up in contrary direction. On the 
other hand, after t =6[s], the pendulum goes over the 
upright position and the input function is switched to 
f2(θ). After the pendulum motion is stopped by a 
large f2(θ), the input function is switched to f1(θ) 
again. Repeating these switches in the set O, the 
states converge to the upright equilibriums. As for 
the range of θ ∈O, the larger parameters k1, k2 are, 
the larger the absolute values of dE&  becomes. 
Therefore, the states converge fast after Ed<-δ is 
satisfied. 
 
The pendulum rotates as shown in Fig. 6b) when the 
initial states are θ =π/3[rad] and θ& = 2.5[rad/s]. In 
this simulation, k1 is 0.7 and k2 is changed in 4.1, 4.3 
and 4.5. From Lemma 3, as k2 becomes larger, the 
energy change |Ea| during a full rotation becomes 
larger and the states reach into the set O during a few 
rotations as shown in Fig. 7b). Furthermore, it is 
verified that the input becomes large if k2 is large. 
 
 

6. CONCLUSIONS 
 
A switching control strategy for inverted pendulum 
systems was proposed based on the energy function 
and its transitions. If gravity worked in the reverse 
direction, the pendulum would remain at the upright 
equilibrium. Thus, we assumed a virtual energy 
whose potential has an opposite sign. Then, a 
switching control law was designed so that this 
virtual energy decreases in as wide a range as 
possible. Paying attention to motions of the 
pendulum, the energy changes were analyzed 
theoretically. The conditions of simple switching 
controller were derived and the stability of the 
switching controlled system was guaranteed. In 
simple examples, the influences of gain parameters in 
the controllers on the motion of the system were 
shown. 
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b) Rotation  
Fig. 6 Illustrations of swinging or rotation 

motions 
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Fig. 7 State trajectories, input signals and 
energy transitions in swinging or 
rotation motions 


