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Abstract: The interval-multiplex approach was applied to controlling the orientation of an 
artificial satellite under incomplete information about its state vector. When estimating 
the state vector, use was made of additional restrictions on the values of inaccuracy of 
measurements. Computer simulation demonstrates the effectiveness of using additional 
restrictions.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
The first automatic system allowing to control the 
triaxial orientation of an artificial satellite with 
respect to the orbital coordinate system (OCS) was 
the control system including an orbital gyro compass 
(GC), an infrared builder of the local vertical (BLV) 
and three sensors measuring the angular velocity of 
the AS with respect to its center of gravity. GC is 
used for the purpose of determining the course of the 
AS, i.e. the angle contained by the vertical plane of 
its symmetry and the orbital plane. With developing 
vehicle-borne computer aids, a possibility appeared 
to exclude the GC (representing a complicated 
electromechanical device) from the structure of the 
gaging equipment and to replace direct measurement 
of the angle of the AS  course by calculation of its 
estimates. In order to calculate these estimates, use is 
usually made of the known algorithms of estimating 
the status of dynamic systems (state observers and 
Kalman filters). One can also effectively use robust 
algorithms based on the multiple (ellipsoidal) 
estimates of the state of discrete dynamic systems 
(Volosov, 1998; Volosov and Tutunnik, 2002).  
 
In the present work, the method of constructing 
guaranteed multiple estimates of the state vector 
(SV) of a satellite in the form of the solution of a 
system of linear inequalities as well as the technique 

of using the obtained estimates in control algorithms 
are developed. Moreover, it is suggested that 
measurement errors represent the values of a certain 
chaotic process (Lychak, 2004) with known interval 
characteristics. For constructing the control 
algorithm, use is made of the method of successive 
optimal linear-quadratic synthesis with the nonlinear 
object being described with a linearized system in a 
certain neighborhood of the current state. Computer 
simulation is carried out in order to examine the 
effectiveness of estimation and control algorithms. 
 

2. STATEMENT OF THE ORIENTATION 
PROBLEM 

 
Consideration is given to the problem of orientation 
of an artificial satellite (AS) with respect to the 
orbital coordinate system (OCS)  000 zyOx . The 
orbit of the AS is supposed to be circular. Moreover, 
the OCS revolves with respect to the inertial space at 
an angular velocity 0ω . The projections of the 

vector 0ω  onto the axes 000 zyOx  are given by the 

relations )(0 e0,0,T −=ω , where e  is the angular 
velocity of rotation of the AS around the Earth. The 
equations of motion of the AS with respect to the 
center of gravity have a form  
                         bωΦAΦ += )(&                        (1) 
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Here )( ϑγ,ψ,T =Φ  is the vector of Krylov angles 
(angles of bank, yaw, tangage) corresponding to the 
succession of turns 3-1-2 (Branets and Shmyglevskii, 
1992), ω  and M are the vector of the angular 
velocity of the AS and that of the control moment, 
which are determined in the AS-fixed coordinate 
system Oxyz  as     
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                          0)( ωb −== 0,0,eT
,  

J  – the matrix of the moments of inertia 
{ }321 ,J,JJdiag=J , )(ΦA  and ω(  are 3 by 3 

matrices 
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It is supposed (Raushenbach and Tokar’, 1979), that 
angular velocity sensors (AVS) measure the 
projections iω , i=1,2,3 of the angular of the AS onto 

the axes 0xyz  while the builder of the local vertical 
(BLV) determines deviations of the axis 0y  from 

the current position of the local vertical – 00y axis. 

The BLV measures the angles γ  and ϑ , i.e. the 

vector )( ϑγ,T =y . In this case, it is supposed that 

the vector of the phase coordinates initially iΦ , 

i=1,2,3 belongs to a certain a priori set 0Ω , which is 
determined by the following system of inequalities  
                      3,2,1,000 =≤≤ iuΦl iii .                (5)  
 
The problem of orientation of the AS lies in 
determining the values of control moments under 
whose action the object is displaced from the initial 
position 0

0 Ω∈Φ  to the specified orientation 
mode. Let this specified orientation mode correspond 
to 0)( ωω ≡t  while angular coordinates are equal 

to zero 0)( ≡tΦ . It is natural that these 
requirements can be realized only under the 
condition of 0)( ≡tM . 
 

It is supposed that measurements are carried out at 
discrete instants of time 0,1,2,...)(ntn =  with a 

certain constant step T , that is, nnt ΦΦ =)( , 

nnt ωω =)( , nTtn =  and the vector of angular 

velocities nω  is measured accurately. As for the 

vector nΦ , only two of its components are measured 

and there exists a measurement error nf . Thus, the 
measurement process is described with a vector-
matrix equation in the form of 

0,1,2,...nnn
T

n =+= ++ ,11 fΦhy                     (6) 

where 1+ny  is the measured object output, 
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001Th , nf - a two-dimensional column 

vector whose components represent the errors of the 
indicated measurement ),( , 1,2jf nj =  at the 

−n th step which is considered as the values of 
some chaotic process. 
In the general case, the components of njf ,  can be 
specified by different chaotic processes with known 
characteristics 
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  1,2,j =  n0,1,2,.k ..,= , ,...,n1,2,N =  
knN −≤  

where  )(ˆ , Nm lj and  )(ˆ , Nm uj are specified 

functions of N . 
 
For controlling the object, the control moments 

nt MM =)( , 1+<≤ nn ttt                                 (8) 
will be realized discretely, where n – the step 
number. 
 

3. THE SYNTHESIS OF THE CONTROL 
MOMENTS 

In order to find the control moments M , let’s carry 
out the linearization of the right-hand sides of Eqs. 
(1), (2) at point nΦ

)
 being the point estimate of the 

state vector, while the column vector of the angular 
velocities is equal to ),,( ,3,2,1 nnn ωωω=ω , 

0,1...n = . At the n -th step, the following 
linearized system is obtained 
   0, ωωεCεAΦAΦ −=++= Φωc
&             (9) 
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When determining ΦC CAA ω ,, , the derivative is 

calculated at ),( nn ωΦ
)

, but in dA  it should be 

calculated at nω . Eqs. (9) and (10) can be rewritten 
as 
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column vector. 
 
It is supposed that measurements are taken at discrete 
moments at constant intervals T . Correction of 
control moments is fulfilled at the same intervals. 
Such a discrete system controlling a continuous 
object (9), (10) can be described with the help of the 
system of difference equations  
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where TeAA =
~

, ∫ ⋅⋅= −
T

T dte
0

~~ BAB A ,      

∫ ⋅⋅= −
T

T dte
0

~~ CAC A ,  T  is the duration of one 

control stroke. 
 
Let’s find the control vector of moments 

)(nTn MM =  which minimizes the following 
quality functional at any initial conditions 
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Here Q  is the specified numerical 6 by 6 matrix, R  
is the numerical 3 by 3 matrix. In view of Eq.10, the 
functional (13) can be rewritten as  
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where AQAQ ~~ T= , BQAH ~~ T= , 

BQBRR ~~T+=  and 0>Q , 0≥R . Without 
losing generality, one can assume that 

                      1,2,...6jλ j =< ,1)~(A ,            (15) 

where )~(Ajλ  are the proper numbers of A~  matrix. 
If inequalities (13) are not valid for the initial 
equation, the control  nM can be taken as 
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where 1C  is a numerical 6 by 3 matrix, nM  is a 
three-dimensional vector denoting the unknown part 
of control actions that should be determined from the 
condition of minimization of functional (14). Then 
Eqs.10 assume the form 
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where   T
1

~~ CBAA +=  and the matrix 1C  should 
be chosen in such a way that the proper number of  
A matrix satisfy the condition (15). It is worth 
noting that the required matrix can be always chosen 
in view of the assumption concerning the 

controllability of the pair B,A ~~
. A possible 

algorithm of choosing 1C  at specified proper 

numbers of A~  matrix is proposed in (Kuntzevich 
and Lychak, 1977). 
 
In view of the substitution (14), the functional (12) 
takes the form 
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Thus, the problem is reduced to the initial one but 
formulated for matrix A  meeting the condition (15). 
In this case, the control is linear and has a form 
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where matrix P  satisfies the following matrix 
equation 
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which represents a discrete algebraic Riccati 
equation for linear discrete systems (Kuntzevich and 
Lychak, 1977). 
 

4. ESTIMATION OF THE STATE VECTOR 
 
Calculation of the point estimate of the phase vector 

nΦ
)

describing the state of the object represents a 
separate problem. In the foregoing considerations, 
this estimate is supposed to be known. At the initial 
moment, it can be chosen as a certain middle point of 
the a priori set 0Ω . In particular, if such a set 
represents a hyperparallelepiped specified by 
inequalities (5), the point estimate can be chosen as 
middle points of the corresponding intervals. On the 
basis of this estimate, one can find the vector of 
control moments 0M , under whose influence the 
object described by Eqs. (1) and (2) moves in the 
phase space from the actual position 00 Ω∈Φ  to 

the point 11 Ω∈Φ  which is also unknown. On the 
basis of the new point estimate of the object position 

11 Ω∈Φ
)

, one can determine the vector of control 

moments 1M and repeat the described procedure. In 
such a way, one can construct the following 
sequence of sets nΩ  

                                     nn Ω∈Φ                        (21) 

Now let’s consider obtaining the sets nΩ  in more 

detail. At the initial moment, 0Ω  represents a set 
described by a certain system of inequalities. At the 
following step, 0Ω  is transformed into the set )1(

0Ω  

representing the set 0Ω  shifted and rotated 
according to the linear relation (14) where angular 
velocities can be replaced by their values as they are 
accurately measured at each iteration. The ideal 
value of the state vector satisfies the relation 

)1(
01 Ω∈Φ , that is the set )1(

0Ω  represents the 
guaranteed estimate of the state vector at the first 
step ( 0n = ). Two components of the state vector of 
the object are also measured at the first step. Thus, 
according to (6) and (7), one can obtain two bilateral 
inequalities for estimating two components of the 
state vector which determine a hyperzone in the 

phase space )1()1( 11 ul mhΦym )) ≤−≤ . Here 

)1(lm) , )1(um) are two-dimensional vectors 

composed from the components )1(,ljm)  and 

)1(,ujm)  )2,1( =j , respectively. 
 
Intersection of the obtained hyperzone with the set 

)1(
0Ω  gives a multiple estimate 1Ω  of the state 

vector at the first step in the form of a polyhedron 
 ∩Ω=Ω )1(

01  
)}1()1(:{ 111 ul mhΦymΦ )) ≤−≤∩ .    (22) 

 At the following steps, due to transformation of the 
multiple estimate nΩ  obtained at the previous step 

into )1( +Ω n
n  and combination of the hyperzone 

obtained after 1n +  measurements with the 
preceding ones, one can conclude that the multiple 
estimate of the state vector at the n -th step is 
determined by (Zelyk et al, 2003)   
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It is worth noting that constructing the system of 
inequalities is accompanied with the abrupt increase 
of their number, that’s why those of them which 
became spurious at this stage are suppressed.  
 

5. COMPUTER SIMULATION 
 
When carrying out computer simulation, the object 
was described by Eqs.(1), (2), the object output was 
measured with an error taken as “white noise”. The 
control moments were obtained according to (19), 
(20). 
 
The systems (1), (2), (9), (10) were integrated by 
means of Runge-Kutta method for the following set 
of the initial values of the angles o25=0γ  , 

o15=0ψ ,  o30=0ϑ at 0=0ε . The values of 
the parameters for the equation of the AS motion, 
control and estimate algorithms were equal to 

π/2700e =  s-1, )( 80100,50,diag=J , 

)(50,50,50diag=R   and 

)( 700,5,5,5,70,7diag=Q . Quantization 

interval T of the control is equal to 0,1 s. The level 
of measurement noise is equal to o

n 0.5≤f . The 
results of simulation are presented in Fig.1-3. Fig.1–2 
demonstrate temporal evolution of the 
angles ϑψγ ,,  and angular velocities 321 ,, ωωω  
which shows that the control object appears in the 



     

orientation mode 0t ≡)(Φ  and 0)( ωω ≡t  with 
an accuracy of 

ΦΦ =∆ (60)= 
=(–0.0179º, –0.0368º, 0.0036º)Т , 

0)( ωωω −=∆ t = 
=(–0.0001,–0.0017,–0.0008)Т deg/s. 

 

 
Fig.1. Temporal evolution of the angles ϑψγ ,, . 
 

 
Fig.2. Temporal evolution of the angular velocities  

321 ,, ωωω  

 
Fig.3.Temporal evolution of the angle ψ  and its 
upper and lower estimates. 
 
 
 

6. CONCLUSIONS 
 

The constructed algorithm for calculating control 
moments, in contrast to the one described in 
(Volosov and Tutunnik, 2002), is insensitive to the 
increase of the initial values of angles ϑψγ ,, . It is 
caused by the fact that the proposed algorithm is not 
based on the assumption about their smallness 
( o10,, <ϑψγ ). Instead of linearizing the nonlinear 
system at the single point corresponding to the 
orientation mode, the linearization is carried out at 
each step, at the points representing the estimates of 
the state vector. The estimation of the object state on 
the basis of  
the created programs has demonstrated the 
effectiveness and expediency of using them in 
practical applications.    
The estimation of the object state on the basis of the 
created programs has demonstrated the effectiveness 
and expediency of using them in practical 
applications 
 

REFERENCES 
 
Branets, V.N. and I.P.Shmyglevskii. (1992).       

Introduction to the theory of strapdown 
navigation systems.  Nauka, Мoscow. 

Kuntzevich, V.M. and M.M Lychak. (1977). 
Synthesis of Automatic Control Systems by 
Means of Lyapunov Functions. Nauka, Мoscow. 

Lychak, M.M. (2004). Interval characteristics of 
chaotic sequences. Kibernetika i Sistemnyi 
Analiz, 5, 58–71. 

Raushenbach, B.V. and Ye.N Tokar’. (1979). 
Orientation control of space vehicles. Nauka, 
Мoscow. 

Volosov, V.V. (1998). Orientation control of the 
space vehicle in the orbital coordinate system on 
the basis of ellipsoidal estimates of its state 
vector. Problemy Upravleniya i Informatiki, 5, 
31-41. 

Volosov, V.V. and L.I.Tutunnik. (2002). Robust 
algorithms of ellipsoidal estimating the state of 
continuous and discrete nonstationary dynamic 
systems characterized with uncontrolled 
perturbations noise in measurement channels. 
Kibernetika i Vychislitelnaya Tekhnika,. 135, 3-
8. 

Zelyk, Ya.I., М.М. Lychak and V.N.Shevchenko. 
(2003). Simulation and identification of control 
objects with the help of Interval-Set Analysis 
MATLAB Toolbox. Problemy Upravleniya i 
Informatiki,  2, 42-57. 


