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Abstract: This paper introduces a pattern recognition method specially dedicated
to the detection and isolation of after-sale failures on an automotive vehicle. This
method is well suited to deal with binary data. It is based on the similarity
between an input pattern and some reference patterns characteristic of each failure
class. The initial space representation is divided into several subspaces in order
to allow classification of patterns which belong simultaneously to several classes.
Experiments with real data demonstrate the good performance and the adapted
structure of this classification system. Copyright c©2005 IFAC
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1. INTRODUCTION

In many industrial applications, it has become
more and more important to monitor the be-
haviour of complex systems, using multiple mea-
surements. Diagnosis techniques are usually clas-
sified into two main categories. On the one hand,
the model based approach uses sensor signals con-
sidered as the inputs and outputs of a dynamic
system. Process monitoring and diagnosis are then
conducted using a physical process or identified
model. On the other hand, the feature based or
pattern recognition approach needs no physical
process model. System knowledge is assumed to
be contained in a learning set composed of mea-
surement vectors and associated operating condi-
tions (Denoeux et al., 1997). Pattern recognition
can use several methods: statistical approaches,
neural networks, fuzzy logic, possibility theory,
belief functions etc.

In classification approach, a set of classes Ω =
(ω1, . . . , ωm) is defined by a corresponding learn-
ing set. The data set is composed of so-called
feature vectors or instances (McLachlan, 1992).
A feature vector is written:

x = (x1, . . . , xd). (1)

The objective of classification is to build a decision
function d(x) which is a mapping from a multidi-
mensional feature space Xd to a decision space
Cm = [0, 1]m:

{

d : Xd → Cm

x → d(x)
. (2)

The statistical pattern recognition approach uses
two different kinds of methods: the first ones are
parametric and the other ones are non-parametric
(Dubuisson, 1990; Freitas, 2002; Little and Ru-
bin, 2002). Parametric methods are used when one



can make an assumption about the data probabil-
ity density (gaussian distribution, Bernoulli dis-
tribution. . . ). Non-parametric methods are used
when no assumption can be made; so-called gen-
eral approximators are then used. Examples of
non parametric methods are: Parzen-Windows, K-
Nearest Neighbours . . . .

In this paper, a non-parametric pattern recogni-
tion method for binary data classification is pro-
posed. In this approach, the decision of classify-
ing a pattern into a class is made by computing
dissimilarities with a limited number of proto-
types (one prototype for each class), resulting in
fast classification and low storage requirements. A
class membership function is defined based on a
dissimilarity function in order to build a decision
system. Generally speaking, pattern recognition
methods deal with the case where each pattern x
of the data set belongs exclusively to one class.
Contrarily to this approach, in some applications,
one or more classes could be present at the same
time. Therefore, in the scope of this paper, a pat-
tern can belong simultaneously to several classes.
It is unclear in the latter setting precisely how to
formalize the goal of a learning algorithm, and,
in general, the right formalization may well de-
pend on the problem at hand. Classical methods,
such as naive Bayes classifier, mixture models,
are neither simply nor directly applied in this
case. In order to solve this problem, the initial
representation space has been divided into class
dedicated subspaces. The dissimilarity method is
then applied in each specific subspace.

The remainder of the paper is organized as fol-
lows. In section 2, our industrial application is
introduced and data modelling is discussed. After-
wards, in section 3, a new non-parametric classi-
fication method for binary data is presented. Fur-
thermore, a new technique for classification of pat-
terns which could belong to several classes, based
on the previous introduced method, is described
in section 4. Experiments and results obtained on
real data application are presented in section 5.
Finally, results are discussed in section 6.

2. AFTER-SALES OFF-BOARD DIAGNOSIS
OF AUTOMOTIVE VEHICLE FAILURES

In today automotive vehicles, the introduction of
on-board electronic systems, the growth of elec-
tronic based functions have made the reparability
very difficult for after-sales technicians (Gissigner
and Le Fort-Piat, 2002). In order to efficiently
isolate a vehicle failure origin, they need external
information in addition to their own expertise.
Each electronic control unit features on-board di-
agnostic functions. When a fault is detected, a
fault code is generated. It is recorded with addi-

tional contextual information on an on-board flash
ROM memory. Moreover, fault codes are often
insufficient to isolate a faulty component and the
recorded data are corrupted with false alarms.
Besides, the data are highly multidimensional: it
is very difficult for a technician to analyse it in
an exhaustive way. Therefore, it is essential to
develop diagnosis methods which allow automatic
interpretation of the recorded data available on a
vehicle.

This paper introduces a classification method
based on fault codes in order to isolate faulty
components. A data read-out is represented by
a pattern vector x defined as: x = (x1, . . . , xd)
where xj is an index indicating if the fault code j
occurs or not:







xj = 1 if fault code j is present
at least once in the recording

xj = 0 otherwise
. (3)

3. BINARY DATA CLASSIFIER

In this section, the binary data classifier basic
elements are described. Firstly, hypotheses and
data are presented. Secondly, method basic idea is
discussed. Finally, prototypes definition, dissimi-
larity indexes and membership function are given.

3.1 Hypotheses and data

For a given kind of vehicle which has a finite
number d of fault codes and a finite number m of
possible failures, corresponding to m faulty com-
ponents to be replaced. Each failure is modelled
by a pattern class.

Let us indicate by: X the learning set on all
known classes, Xk(k = 1, . . . ,m) the learning set
corresponding to the vectors of class ωk, n the
cardinality of X, nk the cardinality of Xk(k =
1, . . . ,m). The following relations are resulting:

X = (X1, . . . ,Xm) = (x1, . . . , xn) (4)

and

n =

m
∑

k=1

nk. (5)

Let us indicate by Z = (z1, . . . , zn) the n label
vectors corresponding to (x1, . . . , xn). A label
vector zk is defined as:

zk = (z1
k, . . . , zm

k ), (6)

where zj
k ∈ [0, 1] is the membership degree of

vector xk to class ωj . The closer zj
k ∈ [0, 1] is to 1,

the more xk is similar with class ωj patterns and
the larger the chance is to belong to ωj . On the

contrary, the closer zj
k ∈ [0, 1] is to 0, the more xk

is dissimilar with class ωj patterns and the smaller
the chance is to belong to ωj .



3.2 From Neighbours to Prototypes

The k-nearest neighbours (k-NN) classifier is a
well known non-parametric classifier, generally
applied when data are of quantitative type. It
provides good performance for optimal values of
k (Cho et al., 1991). In the k-NN rule, a new
input pattern is assigned to the most frequently
represented class among its k-nearest training
samples. The computational complexity is known
to be an important drawback of k-NN techniques
(Denoeux, 1995; Denoeux, 2000; Zouhal and De-
noeux, 1998; Zouhal and Denoeux, 1995). This
problem can be partially solved by synthesizing
the learning set by a limited number of repre-
sentative patterns called prototypes. In this ap-
proach, pattern classification is made by com-
puting a dissimilarity index with q prototypes:
P = (P1, . . . ,Pq). Each prototype k is assumed
to get a degree of membership uk

l to each class ωl.
Full membership of a prototype Pk to a class ωj

can be considered as a special case where uk
l = 1

for l = j and uk
l = 0 for l 6= j.

3.3 Prototypes definition

In this paper, only one prototype is defined for
each class but the method may be generalized to
several prototypes per class. Class ωk is composed
of a binary kernel vector ak and a deviation vector
εk. Therefore, the prototypes set is defined by:

P = (P1, . . . ,Pm) = ({a1, ε1}, . . . , {am, εm}),
(7)

with aj ∈ {0, 1}d and εj ∈]0, 1
2 [d.

Each prototype Pk is supposed to present a full
membership to class ωk.

The binary kernel vector of class ωk, ak =
(a1

k, . . . , ad
k) is defined as:

{

aj
k = 1 if (

card(xj

i
=1,x

i
∈Xk)

nk
) ≥ 0.5

aj
k = 0 if not

. (8)

The deviation vector of class ωk, εk = (ε1
k, ..., εd

k)
is defined as follows:







εj
k =

card(xj

i
=0,x

i
∈Xk)

nk
if aj

k = 1

εj
k =

card(xj

i
=1,x

i
∈Xk)

nk
if aj

k = 0
, (9)

where card(xj
i = 1, xi ∈ Xk) is the number of

times the variable xj takes the value 1 within the
Xk subset data.

aj
k is the majority element of variable xj within

the data of class ωk. It is the median of xj in Xk

subset data. εj
k is the variation of xj , within the

Xk subset data, around aj
k.

The closer εj
k(j = 1, . . . ,m) is to zero, the better

the class ωk is represented by the prototype Pk.

The closer εj
k(j = 1, . . . ,m) is to 1

2 , the more
dispersed the data Xk is. This means that class
ωk is not well represented by prototype Pk. In
this case, definition of other classes ωk related
prototypes is necessary in order to improve the
precision.

3.4 Dissimilarity indexes

The aim of a dissimilarity index is to measure the
difference between two given vectors y

1
and y

2
(Diewert, 2002). A dissimilarity index on a set Ω
is a function ds from Ω × Ω to R

+ which satisfies
the following conditions:

∀y
1

ds(y
1
, y

1
) = 0 (identity)

∀y
1
, y

2
ds(y

1
, y

2
) = ds(y

2
, y

1
) (symmetry)

∀y
1
6= y

2
ds(y

1
, y

2
) > 0 (positivity)

.

(10)

Two indexes have been defined in this paper in
order to measure the dissimilarity of an input
pattern x with the prototypes (P1, . . . ,Pm).

The first dissimilarity index ds1 between x and
the prototype Pk is defined as follows:

ds1(x,Pk) = (R(x,Pk) − R(Pk,Pk)), (11)

where

R(x,Pk) =
d

∑

j=1

[(|xj − aj
k|)ε̄

j
k + (1 − |xj − aj

k|)ε
j
k],

(12)

R(Pk,Pk) =

d
∑

j=1

εj
k (13)

and
ε̄j
k = 1 − εj

k. (14)

The second dissimilarity index ds2 between x and
the prototype Pk is defined as follows:

ds2(x,Pk) =
d

∑

j=1

[ln(
ε̄j
k

εj
k

)|xj − aj
k|]. (15)

It can be easily checked that both indexes satisfy
all the dissimilarity properties.

3.5 Membership function

A membership function is an estimation of the
label vector z of a new pattern vector x . Using
a dissimilarity index ds (ds = {ds1, ds2}), a class
ωk membership function of pattern x with respect
to pattern Pk is defined as follows:

µk(x) =
1

1 + γkds(x,Pk)
. (16)

Figure 1 illustrates the variation of the member-
ship function according to the dissimilarity values



around the prototype Pk for different values of
γk. For a constant value of γk, the more an input
pattern x is dissimilar with prototype Pk, the
smaller its membership value is (Bezdek, 1981).
The optimal value of γk must be determined ac-
cording to the training data in order to minimize
the classification error.
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Fig. 1. Illustration of membership values accord-
ing to dissimilarity values for several values
of γk (γk = 0.2, 0.4, 0.8, 2)

4. PATTERNS BELONGING TO MORE
THAN ONE CLASS

Main (or most) pattern recognition methods deal
with the case where data patterns belong to
only one class. In the vehicle failure isolation
application, it is possible to have several failures
at the same time. Therefore, a pattern vector may
belong simultaneously and with full certainty to
several classes. This problem can be transformed
into a classical one if the patterns which belong
to several classes are considered as belonging
to new classes. Let us assume that h is the
maximum number of failures which can occur
simultaneously. Hence, the classes number of the
system is of order mh. The latter becomes too high
and consequently not practical for large values of
m.

In this paper, a new technique is introduced. It
is based on the method presented in section 3.
Only the singleton class patterns (i.e. patterns
which only belong to one class) are presented to
the classifier in the training phase. This method
is based on 2 steps:

(1) Using the singleton class data, the whole rep-
resentation space of dimension d is divided
into m subspaces EP1, . . . ,EPm (i.e. one
subspace per class).

(2) The membership values of an input pattern
x to classes ω1, . . . , ωm are calculated within
their associated subspaces.

4.1 Subspaces definition

The presence of a failure class ωk is only related
with the appearance of a list of fault codes. In
no case, this failure would be influenced by the
absence or the presence of other fault codes.
Consequently, a subspace EPk is associated with
one class. The subspace EPk is composed of a
features list CPk. The latter are determined as:

CPk = {xj , (j = 1, . . . , d)/aj
k = 1, ǫj

k > E},
(17)

where E ∈ [ 12 , 1] is a threshold determined accord-
ing to the pattern data. Equation 17 says that
features of subspace EPk are those which almost
always occur when class ωk is present.

4.2 Computation of membership degrees in the

subspaces

Usually, prototypes are defined using the initial
representation space, whereas Pk(k = 1, . . . ,m)
are here defined inside each corresponding sub-
space EPk. In order to compute the member-
ship degrees of an input pattern x for classes
ω1, . . . , ωm, 3 steps are required:

(1) m new patterns x1, . . . , xm are built by
projecting x onto the subspaces EPk(k =
1, . . . ,m):

xk = x(CPk). (18)

(2) The dissimilarity index ds(ds = ds1, ds2) is
computed: dsk = ds(xk,Pk).

(3) The membership value with respect to class
ωk is computed: µk(x) = 1

1+γkdsk
.

4.3 Influence of subspace dimensions and parameter

γ determination

The subspace EP1, . . . ,EPm dimensions are not
identical because classes are not defined by the
same number of features. However, membership
function depends on the subspace dimensions
since the dissimilarity index increases as the fea-
ture number increases. To make ideas become
clear, let us give an example using the ds2 dis-
similarity index. Consider two classes ωl and ωk

where ωl dimension is 2 and ωk dimension is
10. In addition, each deviation vector element ǫj

i

equals to α(∀j and i = {l, k}). Consider a pat-
tern x whose ωl and ωk feature values are all
set to 0. In this case, ds2(x,Pl) is lower than
ds2(x,Pk). If γl, γk are the same, µl(x) is greater
than µk(x). Actually, both ωl and ωk classes are
equally unlikely, hence their membership values
must be exactly the same. In order to solve this
problem, the γk(k = 1, . . . ,m) values are defined
in such a way that they normalize the influence
of subspace dimensions. Assume dk is the EPk



subspace dimension and the biggest dimension is
dmax = max(dk, k = 1, . . . ,m), then γk is defined
by:

γk =
dmax

dk

. (19)

4.4 Decision system

The membership degrees of an input pattern x
are combined in a decision system in order to
classify it into one or several classes. The entire
classification algorithm is illustrated in the deci-
sion procedure code.

Decision procedure

Begin

input pattern x
calculate µ(x) [µ(x) = (µ1(x), . . . , µm(x)]
A = (∃µk(x) > ρ)

if (A == true)
then [Rule 1]

Classes = {ωk/µk(x) > ρ}
return Classes

else [Rule 2]

x belongs to an unknown class

end if

End

Let us make some comments about the deci-
sion procedure rules. The membership values
of an input x are calculated into subspaces
EP1, . . . ,EPm. If some values are greater than a
previously set threshold ρ then x is affected to the
corresponding classes (rule 1). If this condition is
false, then x is rejected and considered as belong-
ing to an unknown class (rule 2). One technique to
determine ρ threshold value consists in changing
the value of ρ between 0 and 1 with a fixed step
(for example step equal to 0.05). For each thresh-
old value the classifier performances are computed
then the selected value is that corresponding to
the highest performances. For ρ = 0, no instance
will be rejected. For ρ = 1, all instances will be
novelty rejected.

5. EXPERIMENTS

This section reports some experiments that demon-
strate the efficiency of the classification method
presented in this paper. Some tests were carried
out on a vehicle. Eight data subsets have been
obtained including 7 data subsets with only one
failure per pattern (ω1, . . . , ω7) and one data sub-
set with 2 failures per pattern: ω1 and ω2. Thus,
there are 7 classes (m = 7). The vehicle can gener-
ate 1076 fault codes. Hence, the dimension of the
initial representation space is d = 1076. Between
25 and 30 feature patterns are generated for each
class. Some instances (∼= 6%) which belong to no

known class (outliers) are considered in order to
evaluate if the classifier can detect instances from
new classes. The data of each class are divided
into 2 parts. One part (80 %) is used to learn and
the other part (20 %) is used to test. It should be
noted that in no case the subset with patterns
which belong to two or more classes are used
to determine the prototypes. Subspaces defini-
tion is done using the threshold value E = 0.7.
Firstly, subset data with patterns which belong
to 2 classes are not tested. In order to obtain a
good estimation of the classification error rate and
the novelty rejection rate, their values have been
determined using 20 learnings. For every learning,
a different training subset is used (consequently a
different test subset). Figures 2 and 3 illustrate the
obtained results while using the ds1 dissimilarity
function. Figures 4 and 5 illustrate the obtained
results while using the ds2 dissimilarity function.
For both dissimilarity functions, the highest clas-
sifier performances are given for threshold decision
value ρ = 0.6. The method gives good results with
both sd1 (mean classification error ∼= 7%) and sd2

(mean classification error ∼= 5%) and results are
very close. In addition, the outlier instances are
correctly detected for both dissimilarity functions.
Figures 2 to 5 show that classifier performances
vary considerably according to the learning sam-
ple. This result is due to the fact that the data
set is composed of few instances number. As a
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Fig. 2. Error classification estimation using the
ds1 dissimilarity function and the threshold
values: ρ = 0.6.
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Fig. 3. Novelty rejection estimation using the
ds1 dissimilarity function and the threshold
value: ρ = 0.6.
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Fig. 4. Error classification estimation using the
ds2 dissimilarity function and the threshold
values: ρ = 0.6.
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Fig. 5. Novelty rejection estimation using the
ds2 dissimilarity function and the threshold
values: ρ = 0.6.

consequence, classifier performances depend a lot
on the partition of the data set into learning and
test sets. For every prototypes set obtained on the
20 learnings, 31 patterns belonging to classes ω1

and ω2 have been presented to the system. For
the sd1 and sd2 dissimilarity functions, the classi-
fier detects the correctly assigned classes with no
error.

6. CONCLUSION

In this paper, a pattern classification method for
binary data has been presented. This approach
can be seen as a variant of a distance rule, well
suited for the binary data classification problem.
The classification method is based on the simi-
larity of a new input pattern with a set of ref-
erence patterns. The main novelty introduced in
this paper is that patterns can belong to several
classes. In order to solve this problem, the initial
feature space has been divided into several sub-
spaces, one subspace per class. A subspace k is
composed of features that are always used when
class ωk is present. The membership values of an
input pattern under consideration are combined
in a decision procedure in order to assign the
pattern to one or several classes or to consider the
pattern as belonging to no known class (novelty
rejection). The method has been applied to an
automotive application. The results obtained on a

real data set show that the method is efficient in
both situations: when patterns belong to only one
class and when patterns belong to several classes
at the same time.

Surely, this method can be applied to different
applications with simultaneously occurrence of
several classes and using binary data.
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