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1. INTRODUCTION

The nonlinear output regulation problem, which
deals with asymptotic tracking of reference sig-
nals and/or asymptotic rejection of disturbances
in the output of a nonlinear dynamical system,
has received a lot of attention for the last fifteen
years, see e.g. (Isidori and Byrnes, 1990), (Huang
and Lin, 1994), (Byrnes et al., 1997), (Isidori and
Byrnes, 2003), (Chen and Huang, 2004), where
different variants of the local, semiglobal and
global variants of the output regulation problem
are studied. To the best of our knowledge, all
existing results on this problem deal with systems
with continuous right-hand sides.
In this paper we study the output regulation
problem for nonlinear systems with discontinu-
ous right-hand sides. This study is motivated
by a large variety of regulation problems for
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this class of systems, which includes mechani-
cal systems with friction and electrical systems
with switchings. Our treatment of the problem is
based on the notion of convergent systems pre-
sented in (Demidovich, 1967), see also (Pavlov
et al., 2004a). First, we present preliminary no-
tions and results on discontinuous systems and on
convergent systems (Section 2). Then we formu-
late the uniform global output regulation problem
for systems with discontinuous right-hand sides
(Section 3). This problem setting is an extension
of the uniform global output regulation problem
for continuous systems formulated and studied in
(Pavlov et al., 2004b; Pavlov, 2004). Further, we
derive certain invariant manifold theorems which
serve as a main tool for the analysis of this prob-
lem (Section 4). Based on these theorems, we
obtain necessary and sufficient conditions under
which a controller solves the uniform global out-
put regulation problem (Section 5). This result
yields a variant of the regulator equations for
discontinuous systems. Solvability of these equa-



tions is, under minor assumptions, a necessary
condition for the solvability of the uniform global
output regulation problem. The developed theory
is illustrated with an example (Section 6). Finally,
the paper is finished with conclusions (Section 7).

2. PRELIMINARIES

Regular systems
In this paper, we will consider systems of the form

ż = F(z, w), (1)

with the state z ∈ R
d and piecewise-continuous

bounded inputs w(t) ∈ R
m. The right-hand side of

system (1) is allowed to be discontinuous. In this
case, a solution of system (1) is understood in the
sense of Filippov (Filippov, 1988). In the scope of
the output regulation problem, we will deal with
so-called regular systems, as defined below.

Definition 1. System (1) is called regular if for any
piecewise-continuous input w(t) and any initial
condition z0 ∈ R

d, t0 ∈ R there exists a solution
z(t, t0, z0) of system (1) in the sense of Filippov
defined on its maximal interval of existence I ⊂ R.
This solution is right-unique and for any t ∈ I, t ≥
t0 the solution z(t, t0, z0) continuously depends on
the initial condition z0.

Remark. It is worth mentioning that right-unique-
ness of Filippov solutions implies their continu-
ous dependency on the initial conditions, see e.g.
(Filippov, 1988).

Convergent systems
In many control problems and in particular in
the output regulation problem, it is desirable to
achieve closed-loop dynamics with the property
that all solutions of the closed-loop system “for-
get” their initial conditions and converge to some
steady-state solution which is determined only by
the input. Such property of a system can be for-
malized in the notion of convergent systems pre-
sented below, see (Demidovich, 1967) or (Pavlov
et al., 2004a).

Definition 2. System (1) with a given piecewise-
continuous input w(t) defined for all t ∈ R is said
to be convergent if

i. all solutions z(t) are defined for all t ∈
[t0,+∞) and all initial conditions t0 ∈ R,
z(t0) ∈ R

d,
ii. there exists a unique solution z̄w(t) defined

and bounded for all t ∈ R,
iii. the solution z̄w(t) is globally asymptotically

stable.

System (1) is said to be convergent (for all inputs)
if it is convergent for every bounded piecewise-
continuous input w(t).

We will refer to z̄w(t) as the steady-state solution.
In the context of the output regulation problem,

we will need a stronger convergence property,
which is formulated in the following definition.

Definition 3. System (1) is said to be uniformly
convergent if it is convergent, for every bounded
piecewise-continuous input w(t) the correspond-
ing steady-state solution z̄w(t) is uniformly glob-
ally asymptotically stable (UGAS) and for any
ρ > 0 there exists R > 0 such that

|w(t)| ≤ ρ ∀ t ∈ R ⇒ |z̄w(t)| ≤ R ∀ t ∈ R. (2)

The uniform convergence property is an extension
of stability properties of asymptotically stable
linear time-invariant systems. One can easily show
that the system ż = Az + Bw(t) with a Hurwitz
matrix A is uniformly convergent.

Sufficient conditions for the uniform conver-
gence property can be found in several papers.
In (Demidovich, 1967) (see also (Pavlov et al.,
2004a)) a simple sufficient condition for this prop-
erty was obtained for systems with smooth right-
hand sides. In (Yakubovich, 1964), sufficient con-
ditions for the uniform convergence property were
obtained for systems of the form

ẋ = Ax − Dφ(y) + g(w) (3)

y = Cx,

where φ(y) is a (possibly discontinuous) scalar
nonlinearity and g(w) is a continuous function.
The next theorem is a particular case of the result
from (Yakubovich, 1964).
Theorem 1. Suppose the matrix A is Hurwitz, the
nonlinearity is non-decreasing and the following
two conditions are satisfied

Re(C(iωI − A)−1D) > 0, ∀ ω ≥ 0, (4)

lim
ω→+∞

ω2Re(C(iωI − A)−1D) > 0. (5)

Then system (3) is regular and uniformly conver-
gent.

3. THE UNIFORM GLOBAL OUTPUT
REGULATION PROBLEM

Consider systems modelled by equations of the
form

ẋ = f(x, u, w) (6)

e = hr(x,w), y = hm(x,w), (7)

with the state x ∈ R
n, control u ∈ R

p, regulated
output e ∈ R

l, measured output y ∈ R
k and

exogenous signal w ∈ R
m. The functions hr(x,w)

and hm(x,w) are assumed to be continuous. The
function f(x, u, w) is continuous in u and w, but
may be discontinuous in x. The exogenous signal
w(t), which can be viewed as a disturbance in
equation (6) or as a reference signal in (7), is
generated by the exosystem

ẇ = s(w). (8)



The function s(w) is assumed to be locally Lips-
chitz. We will consider solutions of the exosystem
starting in a compact positively invariant set of
initial conditions W+ ⊂ R

m.

The uniform global output regulation prob-
lem is formulated in the following way: find, if
possible, a feedback of the form

ξ̇ = η(ξ, y), ξ ∈ R
q (9)

u = θ(ξ, y),

with some q such that the closed-loop system

ẋ = f(x, θ(ξ, hm(x,w)), w), (10)

ξ̇ = η(ξ, hm(x,w)) (11)

satisfies the following three conditions:

a) system (10), (11) is regular,
b) system (10), (11) is uniformly convergent,
c) for any solution of the exosystem starting in

w(0) ∈ W+ and any solution of the closed-
loop system starting in (x(0), ξ(0)) ∈ R

n+q

it holds that e(t) = hr(x(t), w(t)) → 0 as
t → +∞.

Notice, that in this problem setting discontinuities
are allowed not only in the system (6), but also
in the controller (9). In the problem formulation
presented above, condition a) means that all so-
lutions of the closed-loop system are well-defined
in the sense of Filippov, they are right-unique
and continuously depend on their initial condi-
tions. Condition b) means that for any piecewise-
continuous bounded input w(t) the closed-loop
system has a unique UGAS steady-state solution.
Finally, condition c) means that for any solution
of the exosystem w(t) starting in w(0) ∈ W+ and
for any solution of the closed-loop system corre-
sponding to this w(t) the regulated output e(t)
tends to zero. This problem setting is an extension
of the uniform global output regulation problem
formulated and studied in (Pavlov et al., 2004b)
for continuous systems. It was shown in (Pavlov
et al., 2004b) that such problem formulation is
a natural extension of the conventional problem
settings for the linear and local nonlinear output
regulation problems to the global output regula-
tion problem for nonlinear systems.

It should be mentioned, that the requirement of
uniform convergence implies that for any solu-
tion of the exosystem w(t) all solutions of the
closed-loop system corresponding to this w(t) are
bounded in forward time.

4. INVARIANT MANIFOLD THEOREMS

In this section, we present two results on the
dynamics of uniformly convergent systems of the
form

ż = F(z, w), z ∈ R
d (12)

with inputs w(t) generated by the autonomous
system

ẇ = s(w). (13)

System (12) may be discontinuous, but it is as-
sumed to be regular (see Definition 1). System
(13) has a locally Lipschitz right-hand side. First,
we will consider the case of system (13) satisfying
the following boundedness assumption.

(BA) All solutions of system (13) are defined for
all t ∈ (−∞,+∞) and for every r > 0 there
exists ρ > 0 such that

|w0| < r ⇒ |w(t, w0)| < ρ ∀ t ∈ R. (14)

A simple example of a system satisfying this
assumption is a linear harmonic oscillator. The
next theorem provides sufficient conditions for the
existence of a continuous globally asymptotically
stable invariant manifold of the form z = α(w).

Theorem 2. Consider system (12) and system
(13) satisfying the boundedness assumption (BA).
Suppose system (12) is regular and uniformly con-
vergent. Then there exists a unique continuous
function α : R

m → R
d such that for any solution

w(t) of system (13) the function z(t) = α(w(t)),
t ∈ R, is a UGAS solution (in the sense of Filip-
pov) of system (12).

The proof of this theorem is given in Appendix. In
the output regulation problem we may deal with
exosystems that do not satisfy the boundedness
assumption (BA). For example, it can be an ex-
osystem with a limit cycle or any other attractor
with an unbounded domain of attraction. There-
fore, we need to relax the conditions of Theorem 2
in order to include exosystems with complex dy-
namics. This is done in the next theorem.

Theorem 3. Consider systems (12) and (13). Sup-
pose system (12) is regular and uniformly conver-
gent. Let W+ be a bounded positively invariant
set of system (13) and W± ⊂ W+ be an invariant
subset of W+. Then there exists a continuous
mapping α : R

m → R
d such that for any solution

w(t) of system (13) starting in w(0) ∈ W+ the
function z(t) = α(w(t)) for t ≥ 0 is a UGAS
solution of system (12). In general, the mapping
α(w) with such properties is not unique, but it is
uniquely defined for all w ∈ W±.

The proof of this theorem is omitted here, because
it repeats the proof of a similar result for contin-
uous systems given in (Pavlov et al., 2004b).

5. CONDITIONS FOR UNIFORM GLOBAL
OUTPUT REGULATION

In this section, we apply the invariant manifold
theorems to study the solvability of the uni-
form global output regulation problem. Denote by



Ω(w0) ⊂ R
m the set of all ω-limit points of the

trajectory w(t, w0) satisfying the initial condition
w(0, w0) = w0. Recall that w∗ ∈ Ω(w0) if there
exists a sequence {tk} such that tk → +∞ and
w(tk, w0) → w∗ as k → +∞. Denote

Ω(W+) :=
⋃

w0∈W+

Ω(w0).

Since the set W+ is a compact positively invariant
set, then Ω(W+) is a nonempty invariant subset
of W+. Moreover, Ω(W+) attracts all solutions of
the exosystem (8) starting in W+, see (Bhatia and
Szego, 1970). The next theorem, which is based
on Theorem 3, establishes necessary and sufficient
conditions for a controller (9) to solve the uniform
global output regulation problem.

Theorem 4. Suppose controller (9) is such that
the closed-loop system (10), (11) is regular and
uniformly convergent. Then controller (9) solves
the uniform global output regulation problem if
and only if there exist continuous mappings π(w)
and σ(w) defined in some neighborhood of Ω(W+)
such that for any solution of the exosystem start-
ing in w(0) ∈ Ω(W+) the function (x(t), ξ(t)) =
(π(w(t)), σ(w(t))) is a solution of the closed-loop
system (10), (11) for all t ∈ R and hr(π(w), w) = 0
for all w ∈ Ω(W+).

Proof: Since the closed-loop system is regular
and uniformly convergent, by Theorem 3 there
exist continuous mappings π̃(w) and σ̃(w) such
that for any solution of the exosystem w(t) star-
ing in w(0) ∈ W+ the function (x(t), ξ(t)) =
(π̃(w(t)), σ̃(w(t))) is a UGAS solution of the
closed-loop system.
Necessity: Set π(w) := π̃(w) and σ(w) := σ̃(w).
Consider a point w∗ ∈ Ω(W+). By the definition
of Ω(W+), there exists w0 ∈ W+ and {tk}

∞
k=1

such
that tk → +∞ and w(tk, w0) → w∗ as k → +∞.
Therefore, for this w(t) := w(t, w0) the regulated
output e(t) along the solution (π(w(t)), σ(w(t)))
satisfies e(tk) → hr(π(w∗), w∗) as k → +∞. Since
e(t) → 0 as t → +∞, then hr(π(w∗), w∗) = 0.
Due to the arbitrary choice of w∗ ∈ Ω(W+), we
obtain that hr(π(w), w) = 0 for all w∗ ∈ Ω(W+).
Sufficiency: Since (π̃(w(t)), σ̃(w(t))) is UGAS,
every solution of the closed-loop system con-
verges to (π̃(w(t)), σ̃(w(t))). At the same time,
(π̃(w(t)), σ̃(w(t))) tends to the set π̃(Ω(W+)) ×
σ̃(Ω(W+)), because w(t) tends to the ω-limit set
Ω(W+). Since Ω(W+) is an invariant subset of
W+, by Theorem 3 the mappings π̃(w) and σ̃(w)
are uniquely defined for all w ∈ Ω(W+). This
implies that π̃(w) = π(w) and σ̃(w) = σ(w) for
all w ∈ Ω(W+), where π(w) and σ(w) are the
mappings from the formulation of the theorem.
Uniting these observations, we conclude that ev-
ery solution of the closed-loop system tends to the
set π(Ω(W+))×σ(Ω(W+)). Since hr(π(w), w) = 0

for all w ∈ Ω(W+), this implies that the regulated
output e(t) tends to zero as t → +∞.2

Theorem 4 provides a characterization of all con-
trollers solving the uniform global output reg-
ulation problem for discontinuous systems. For
continuous systems similar results were obtained
in (Pavlov et al., 2004b) and (Isidori and Byrnes,
2003). If a controller is sought in the form (9) with
a continuous mapping θ(ξ, y), then by denoting
c(w) := θ(σ(w), hm(π(w), w)), we obtain the fol-
lowing necessary condition for the solvability of
the problem.

Lemma 1. The uniform global output regulation
problem is solvable with a controller (9) with
a continuous mapping θ(ξ, y) only if there exist
continuous mappings π(w) and c(w) defined in
some neighborhood of Ω(W+) such that for any
solution of the exosystem w(t) lying in Ω(W+)
the function x̄w(t) := π(w(t)), t ∈ R, is a solution
(in the sense of Filippov) of the system

ẋ = f(x, c(w(t)), w(t)) (15)

and hr(π(w), w) = 0, ∀ w ∈ Ω(W+) (16)

For systems with continuous right-hand sides, it
was shown in (Pavlov et al., 2004b) that solvability
of the regulator equations (see e.g. (Byrnes et al.,
1997)) is a necessary condition for the solvability
of the uniform global output regulation problem.
The result of Lemma 1 is an extension of this
necessary condition to the case of discontinuous
systems. In the discontinuous case, equations (15),
(16) are a counterpart of the regulator equations.

6. EXAMPLE

We illustrate the application of Theorem 4 with
the following example. Consider the system

ẋ1 = x2 + x3

ẋ2 = x3 − x2 − sign(x2) (17)

ẋ3 = u

e = x1 − w1, y = (x,w),

with the exogenous signal generated by the ex-
osystem

ẇ1 = w2, ẇ2 = −w1. (18)

The set of initial conditions for the exosystem
is given by W+ := {(w1, w2) : w2

1 + w2
2 ≤ 1}.

Any solution of the exosystem starting in W+

satisfies |w2(t)| ≤ 1 for all t ∈ R. Moreover,
Ω(W+) = W+. We will try to find a continuous
static state-feedback controller solving the uni-
form global output regulation problem. First, we
need to check solvability of the regulator equations
(see Lemma 1). One can easily check that for
c(w) = −w1, π(w) = (w1, 0, w2)

T and for any



solution of the exosystem (18) starting in W+ the
function x̄w(t) := π(w(t)) is a solution (in the
sense of Filippov) of system (15) and the equality
(16) holds. We will look for a controller solving
the global uniform output regulation problem in
the form

u = c(w) + K(x − π(w)). (19)

System (17) in closed-loop with this controller is
a system of the form (3), where D = (0, 1, 0)T ,
C = (0, 1, 0), g(w) = (0, 0, c(w) − Kπ(w))T and
the matrix A is computed from the parameters
of system (17) and from the gain matrix K.
The gain K is chosen such that conditions (4)
and (5) are satisfied. For example, it can be
chosen equal to K = (−1,−1,−1). By Theorem 1,
the closed-loop system is regular and uniformly
convergent. Moreover, for any solution of the
exosystem w(t) = (w1(t), w2(t)) lying in W+ the
function x̄w(t) := π(w(t)) is a solution (in the
sense of Filippov) of the closed-loop system and
along this solution the regulated output equals
zero. By Theorem 4 controller (19) solves the
global uniform output regulation problem.

7. CONCLUSIONS

We have formulated and studied the uniform
global output regulation problem for systems with
discontinuous right-hand sides. Necessary and suf-
ficient conditions for a controller to solve this
problem are presented. It is shown that solvability
of the (extended) regulator equations is a neces-
sary condition for the solvability of the problem.
These solvability results are based on certain in-
variant manifold theorems serving, in this case,
as global discontinuous counterparts of the center
manifold theorems, which form a foundation for
the analysis of the local output regulation problem
for smooth nonlinear systems.
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APPENDIX: PROOF OF THEOREM 2

Uniqueness: First, we show, that if there exists
a continuous mapping α(w) such that z(t) =
α(w(t)) is a solution of system (12), then such
mapping is unique. Suppose α(w) and α̃(w) are
two such distinct mappings. Consider a solution
w(t) of system (13). Due to the boundedness
assumption (BA), this solution is bounded on
t ∈ R. Since α(w) and α̃(w) are continuous, they
map bounded sets to bounded sets. Therefore,
z̃(t) := α̃(w(t)) and z(t) := α(w(t)) are two dis-
tinct solutions of system (12) which correspond to
the same input w(t) and which are bounded for all
t ∈ R. This contradicts the convergence property
of system (12). Thus, such mapping α(w), if it
exists, is unique.
Existence: We prove the existence of α(w) by
constructing this mapping. Due to the bounded-
ness assumption (BA), for every w0 ∈ R the
solution w(t, w0) of system (13) which satisfies
the initial condition w(0, w0) = w0 is defined
and bounded for all t ∈ R. Since system (12)
is convergent, for this w(t) = w(t, w0) there ex-
ists a unique UGAS steady-state solution z̄w(t),
which is defined and bounded for all t ∈ R. For
all w lying on the trajectory w(t, w0), t ∈ R,
define the mapping α(w) in the following way:
α(w(t, w0)) := z̄w(t). Repeating this process for
all trajectories w(t, w0) of system (13), we define
α(w) for all w ∈ R

m. By the definition of α(w),
for any solution w(t) = w(t, w0) of system (13)
the function z(t) = α(w(t)), t ∈ R, is a UGAS
solution (in the sense of Filippov) of system (12).
Continuity: It remains to show that the mapping
z = α(w), constructed above, is continuous, i.e.



that for any w1 ∈ R
m and any ε > 0 there

exists δ > 0 such that |w1 − w2| < δ implies
|α(w1)− α(w2)| < ε. For simplicity, we will prove
continuity in the ball |w| < r. Since r can be
chosen arbitrarily, this will imply continuity in
R

m. In the sequel, we assume that |w1| < r and
ε > 0 are fixed and the point w2 varies in the ball
|w2| < r.
As a preliminary observation, notice that |w1| ≤ r
and |w2| ≤ r imply, due to the boundedness
assumption (BA), that |w(t, wi)| ≤ ρ for i = 1, 2
and for all t ∈ R. This, in turn, due to uni-
form convergence of system (12) (see (2)) and
due to the construction of α(w), implies that
|α(w(t, wi))| ≤ R for i = 1, 2 and for all t ∈ R.

In order to prove continuity of α(w), we introduce
the function

ϕT (w1, w2) := ẑ(0,−T, α(w(−T,w2)), w1),

where the number T > 0 will be specified later and
ẑ(t, t0, z0, w∗) is the solution of the time-varying
system

˙̂z = F(ẑ, w(t, w∗)) (20)

with the initial condition ẑ(t0, t0, z0, w∗) = z0.
The function ϕT (w1, w2) has the following mean-
ing. First, consider the steady-state solution
α(w(t, w2)), which is a solution of system (20)
with the input w(t, w2) and initial condition
α(w(0, w2)) = α(w2). We shift along α(w(t, w2))
to time t = −T and appear in α(w(−T,w2)).
Then we switch the input to w(t, w1), shift for-
ward to the time instant t = 0 along the so-
lution ẑ(t) corresponding to this w(t, w1) and
starting in ẑ(−T ) = α(w(−T,w2)) and appear
in ẑ(0) = ϕT (w1, w2). Notice, that ϕT (w0, w0) =
α(w0), because there is no switch of inputs and we
just shift back and forth along the same solution
α(w(t, w0)) – at this point we need the right-
uniqueness of solutions of system (12), which is
guaranteed by the regularity requirement on sys-
tem (12). Thus,

α(w1) − α(w2) = ϕT (w1, w1) − ϕT (w2, w2)

= ϕT (w1, w1) − ϕT (w1, w2) (21)

+ϕT (w1, w2) − ϕT (w2, w2).

By the triangle inequality, this implies

|α(w1) − α(w2)| ≤ |ϕT (w1, w1) − ϕT (w1, w2)|

+ |ϕT (w1, w2) − ϕT (w2, w2)|.

As follows from Lemma 2 (see below), there exist
T > 0 such that

|ϕT (w1, w1) − ϕT (w1, w2)| < ε/2 ∀ |w2| < r.
(22)

It follows from Lemma 3 (see below), that given
a number T > 0, there exists δ > 0 such that

|ϕT (w1, w2) − ϕT (w2, w2)|< ε/2 (23)

∀ w2 : |w1 − w2|< δ.

Unifying inequalities (22) and (23), we obtain
|α(w1) − α(w2)| < ε for all w2 satisfying |w1 −
w2| < δ. Due to the arbitrary choice of ε > 0 and
|w1| < r, this proves continuity of α(w) in the ball
|w| < r. This completes the proof of continuity of
α(w) and the proof of the theorem.2

Lemma 2. There exists T > 0 such that inequal-
ity (22) holds.

Proof: In order to prove inequality (22), notice
that ϕT (w1, w1) = ẑ1(0) and ϕT (w1, w2) = ẑ2(0),
where ẑ1(t) and ẑ2(t) are solutions of system (20)
with the input w(t, w1) satisfying the initial con-
ditions ẑ1(−T ) = α(w(−T,w1)) and ẑ2(−T ) =
α(w(−T,w2)). By the definition of α(w), ẑ1(t) =
α(w(t, w1)) is a bounded UGAS solution of sys-
tem (20). This impliess that it attracts all other
solutions ẑ(t) of system (20) uniformly over the
initial conditions t0 ∈ R and ẑ(t0) from any
compact set. In particular, for the compact set
K(R) := {z : |z| ≤ R} and for the fixed ε > 0
there exists T̃ε(R) such that ẑ(t0) ∈ K(R) implies

|ẑ1(t) − ẑ(t)| < ε/2, ∀ t ≥ t0 + T̃ε(R), t0 ∈ R.
(24)

Set T := T̃ε(R). By the definition of ẑ2(t),
ẑ2(−T ) = α(w(−T,w2)). Since α(w(t, w2)) ∈
K(R) for all t ∈ R and all |w2| < r (see above),
then ẑ2(−T ) ∈ K(R). Thus, for t0 = −T and
t = 0 formula (24) implies

|ẑ1(0) − ẑ2(0)| < ε/2, (25)

which is equivalent to (22).2

Lemma 3. Given a number T > 0 there exists a
number δ > 0 such that inequality (23) is satisfied.

Proof: In order to show (23), notice that for
a fixed T > 0, the function ẑ(0,−T, z0, w0) is
continuous with respect to z0 and w0. This is due
to the requirement of continuous dependence on
initial conditions from the regularity assumption
on system (12). Thus, ẑ(0,−T, z0, w0) is uniformly
continuous over the compact set G := {(z0, w0) :
|z0| ≤ R, |w0| ≤ r}. Hence, there exists δ > 0
such that if |z0| ≤ R, |w1| ≤ r, |w2| ≤ r and
|w1 − w2| < δ, then

|ẑ(0,−T, z0, w1)) − ẑ(0,−T, z0, w2)| ≤ ε/2. (26)

Recall, that by the definition of ϕT (w1, w2)

ϕT (w1, w2) − ϕT (w2, w2) =

ẑ(0,−T, z0, w1)) − ẑ(0,−T, z0, w2), (27)

where z0 := α(w(−T,w2)). Notice, that |w1| ≤ r,
|w2| ≤ r and |α(w(−T,w2))| ≤ R. Hence, as
follows from (26) and (27),

|w1−w2| < δ ⇒ |ϕT (w1, w2)−ϕT (w2, w2)| < ε/2.

Thus, we have shown (23).2


