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Abstract: This paper presents an approach to build a soft sensor based on
computational intelligence techniques. The goal is to identify fuzzy models from
numerical data. First of all, the fuzzy model input variables are selected from the
secondary variables set by applying Kohonen maps. Then, the Lipschitz quotients
are used to select the lag structure of the fuzzy model. A fuzzy clustering algorithm
is applied to find an initial rule base, and, to conclude the identification process,
this initial rule base is simplified by merging the similar membership functions. The
validity of the proposed identification method is demonstrated by the development
of a soft sensor to infer the top composition of a distillation column. Copyrigth c©
2005 IFAC
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1. INTRODUCTION

Soft sensor or inferential estimator has been an
alternative approach for estimating process vari-
ables when hardware sensors are not available, or
when their high cost or technical limitations pre-
vent their on-line use. Typically, in the chemical
industries, soft sensors can be used to estimate
product compositions from temperature and other
secondary variables. However, because chemical
processes are quite complex to model, and are
characterized by strong nonlinearities, theoreti-
cal modeling approaches based on Kalman filter
or other classical estimation techniques are hard
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to implement in real world (Zambrogna et al.,
2005; Lant et al., 1991).

For these reasons, alternative approaches based on
computational intelligence techniques have been
recently proposed (Qin, 1996; Rallo et al., 2002;
Fabro, 2003), in which successful applications of
Artificial Neural Networks (ANN) and Partial
Least Squares (PLS) to develop soft sensors for
different processes have been reported. In this
context, this work proposes a fuzzy modeling
technique that can be used to build soft sensors
in chemical industries.

This methodology is composed by three stages.
First, the input variables to the soft sensor are
selected by applying Kohonen maps, and the Lips-
chitz quotients are used to select the structure of a
linguistic fuzzy model. Second, a fuzzy clustering
algorithm is applied to find an initial rule base
that can model the interaction between variables



and process non-linearities. Finally, the model
is simplified by merging the similar membership
functions from each variable domain.

This paper is organized as follows. Section 2 de-
tails each procedure in a theoretical point of view,
and section 3 synthesizes the proposed methodol-
ogy. Section 4 presents simulation results obtained
with the application of the developed soft sensor
to infer the top composition of a distillation col-
umn. Section 5 outlines some concluding remarks.

2. IDENTIFICATION PROCEDURE

The fuzzy models used in this work are similar
to those described in Nagai and Arruda (2002),
in which the model rule base is composed by M
linguistic rules, with n input variables (selected
from process secondary variables) and one output
variable (inferred variable), as shown in figure 1.

If x1 is A11 and . . . and xn is A1n Then y is B1
If x1 is A21 and . . . and xn is A2n Then y is B2

.

.

.
If x1 is AM1 and . . . and xn is AMn Then y is BM

Fig. 1. Linguistic fuzzy model.

The fuzzy inference engine uses the Zadeh Infer-
ence Method and the inferred output y∗ is ob-
tained by means of the Center of Area (COA)
defuzzification method (Lee, 1990).

The first phase of the proposed fuzzy model iden-
tification method is concerned with the selection
of a proper input set, and the determination of
the input-output lag space. These two problems
are not independent, but, in this methodology,
they are solved in independent way, through two
distinct procedures, as described below.

2.1 Input Variables Selection

In this work, the technique proposed by Rallo et
al. (2002) is adapted to select the most adequate
subset of secondary variables to compose the soft
sensor input set. In this case, the most adequate
subset is the smallest secondary variables set con-
taining most of the relevant informations about
the input space.

Initially, the secondary variables subsets are spec-
ified as follows. First, it is computed the correla-
tion coefficient between each secondary variable
and the output variable. The secondary variables
are sorted by their correlation coefficient absolute
value, creating the set S of ordered secondary
variables. Let p the number of secondary variables.
The p subsets are constructed according to the
sequence of variables in S, i.e., the first subset
is composed by the first variable in S and the

output variable; the second subset is composed by
the first and second variables in S and the output
variable. Then, a Kohonen map is built for each
subset, and the quality of each map is calculated
by means of the dissimilarity measure between two
distinct maps Lq and Lr (Kaski and Lagus, 1996),
defined by equations (1) and (2). The dissimilar-
ity measure informs about the relevance of each
combination of secondary variables in relation to
the output variable (Rallo et al., 2002).

D(Lq, Lr) = E

[
|dLq(x)− dLr(x)|
dLq(x) + dLr(x)

]
, (1)

d(x) = ‖x(t)− wbmu1(t)‖+

pbmu2−1∑
i=pbmu1

‖wi(t)− wi+1(t)‖ , (2)

where: E is the average expectation; pbmu1 is the
first bmu (best map unit) position; pbmu2 is the
second bmu position; and d(x) is the distance
from x to the second bmu, denoted by wbmu2(t),
beginning at the first bmu, denoted by wbmu1(t).

The distance d(x) combines an indication of the
continuity of the mapping from the data set to the
map structure with a measure of the accuracy of
the map in representing the data set (Kaski and
Lagus, 1996). The smallest average of dissimilar-
ity value calculated through equation (1) for any
given subset of secondary variables indicates the
similarity in quality and quantity of the informa-
tion represented by the maps. Figure 2 shows the
procedure of input variables selection.

• Step 1: Let U = {u1, . . . , up} the secondary variables
set and y the output variable. Calculate the correlation
coefficient between each secondary variable and the
output variable;

• Step 2: Sort the secondary variables by their correla-
tion coefficient absolute value, creating the set S =
{s1, . . . , sp}, in which ‖corr(si, y)‖ ≥ ‖corr(si+1, y)‖,
and ‖.‖ is the absolute value;

• Step 3: Define the number W of units in the self-
organizing maps (SOMs);

• Step 4: Let p the number of secondary variables. Define
the p subsets of secondary variables (c1, . . . , cp) from
the set S, in which c1 = {s1, y}, c2 = {s1, s2, y}, . . .,
cp = {s1, . . . , sp, y};

• Step 5: Define a SOM with W units for each subset ci,
and train these SOMs by using the training data set;

• Step 6: For each pair of SOMs Lq and Lr, q 6= r,
calculate the dissimilarity measure (equation (1));

• Step 7: Calculate the average of dissimilarity of each
SOM Lq with relation to the other SOMs;

• Step 8: The map with the smallest value of average
of dissimilarity contains the most adequate subset of
secondary variables.

Fig. 2. The input variables selection algorithm.

2.2 Lag Space Selection

The method proposed in He and Asada (1993)
is applied to select the lag structure of the
fuzzy model. This method uses the Lipschitz
quotients, that are calculated from the data set
{u(t), y(t)} , t = 1, . . . , Nd, where u(t) is the vec-
tor containing all input variables of the fuzzy



model (previously selected) and y(t) is the fuzzy
model output, and the regressors vector is defined
by equations (3) and (4):

ϕ(t) = [y(t− 1), . . . , y(t− lagy),

u(t− d− 1), . . . ,u(t− d− lagu)]T , (3)

ZNd = {[ϕ(t), y(t)] , t = 1, . . . , Nd} , (4)

where lagy is the output lag, d is the input delay,
lagu is the input lag, and ZNd is the set of Nd

input-output pairs. Thus, for all combinations of
input-output pairs, the Lipschitz quotients are
calculated as follows:

qi,j =
|y(ti)− y(tj)|
|ϕ(ti)− ϕ(tj)|

, i 6= j. (5)

The entire procedure is outlined in figure 3 (He
and Asada, 1993):

• Step 1: For given choice of lag space (z), determine the
Lipschitz quotients of all combinations of input-output
pairs (equation (5));

• Step 2: Select the r largest quotients, r = 0.01Nd

≈0.02Nd. The largest quotients typically occur when the
differences ϕ(ti)− ϕ(tj) are small;

• Step 3: Evaluate the criterion:

q̄
(z)

=

(
r∏

t=1

√
zq

(z)
(t)

) 1
r

, (6)

where q(z) is the quotient of the lag space z, and q̄(z) is
the criterion value for the lag space z.

• Step 4: Repeat the calculations for a number of different
lag structures.

• Step 5: Plot the criterion as a function of lag space and
select the optimal number of regressors as the “knee-
point” of the curve.

Fig. 3. The lag selection algorithm.

In the phase of fuzzy model parameters estima-
tion, a fuzzy clustering algorithm is applied to the
input-output space, and it generates an overesti-
mated rule base, in which each cluster corresponds
to a rule. A high value of the initial rule base size
(ncr) is used as a way to cover all the important
regions of the input-output space, thus the clus-
tering results become less dependent on the initial
partition of the variables domain (Setnes, 2000).

2.3 Fuzzy Clustering

Clustering is a tool that attempts to assess the
relationships among patterns of the data set by or-
ganizing the patterns into groups or clusters such
that patterns within a cluster are more similar to
each other than are patterns belonging to different
clusters (Xie and Beni, 1991). Fuzzy clustering
methods provide fuzzy partitions such that each
object or data point could belong to two or more
clusters with different degrees of membership. So,
fuzzy clustering methods provide an adequate tool

for representing real-data structures. A fuzzy c-
partition is defined as follows.

Definition 2.1. Fuzzy c-partition: Let a data set
X = {x1, . . . ,xn}, where xk ∈ <p. Vc is the set of
all real c × n matrices U = [uik]. The set Mfc of
fuzzy c-partitions matrices is:

Mfc = {U ∈ Vc | uik ∈ [0, 1], 1 ≤ i ≤ c, 1 ≤ k ≤ n; and

c∑
i=1

uik = 1, ∀k ∈ {1, 2, . . . , n}}, (7)

where uik is the membership value of the data
sample xk to the cluster ci.

In the fuzzy c-means (FCM) clustering algorithm,
the objective is to find U [uik] ∈ Mfc and V =
(vi, . . . ,vc), vi ∈ <p such that Jm(U, V ) (equa-
tion (8)) is minimized.

Jm(U, V ) =

n∑
k=1

c∑
i=1

(uik)m‖xk − vi‖2, (8)

where m ∈ (1,∞) is the fuzziness index. The
approximate optimization given by the FCM
algorithm is described in figure 4 (Bezdek, 1987).

• Step 1: Let the data set X, set c ∈ {2, 3, . . . , n − 1},
m ∈ (1,∞), and initialize U(0) ∈ Mfc.

• Step 2: In the iteration q, q = 0, 1, 2, . . . , compute the
vectors of V , from the new center matrix Ci:

v
(q)
i

=

∑n

k=1
xk(u

(q)
ik

)m∑n

k=1
(u

(q)
ik

)m
. (9)

• Step 3: Refresh U(q) = [u
(q)
ik

] to U(q+1) = [u
(q+1)
ik

] such
that:

u
(q+1)
ik

=
1∑c

j=1

(
‖xk−v

(q)
i

‖

‖xk−v
(q)
j

‖

) 2
m−1

, (10)

where: 1 ≤ i ≤ c, 1 ≤ k ≤ n

• Step 4: If ‖U(q+1) − U(q)‖ < ε, then stop the process;
otherwise, q = q + 1 and go back to the step 2.

Fig. 4. The fuzzy c-means algorithm.

2.4 Initial rule base generation

In this phase, the samples from the data set are
classified into ncr clusters. Each one of these
clusters corresponds to a rule, and each cluster
center coordinate corresponds to a point in the
input and output domains (the rule antecedent
and consequent parts), as shown in figure 5.

The corresponding membership functions of the
fuzzy sets in the rules are obtained from the par-
tition matrix U . One dimensional fuzzy sets Aij

and Bi (from the ith cluster) are obtained from
the multidimensional fuzzy sets defined point-wise
in the ith row of the partition matrix U = [uik]
by fuzzy projections (Lee, 1990) onto the input



Fig. 5. The clusters projections.

and output domains. This procedure generates the
fuzzy sets discrete points, which can be approxi-
mated by parametric membership functions. The
gaussian function has been selected to represent
the fuzzy sets. In this case, the parameters of the
membership functions can be easily found from
the discrete fuzzy sets. For each fuzzy set, the
element with the highest grade of membership
function is the center of the gaussian function,
and the standard deviation is computed from the
point-wise values. The figure 6 shows the rule base
obtained from the clusters projection.

C1: If x is A1 Then y is B1
C2: If x is A2 Then y is B2
C3: If x is A3 Then y is B3

Fig. 6. Rule base from clusters projection.

2.5 Initial rule base simplification

Fuzzy rule-based models obtained from data often
contain redundancy present in the form of similar
fuzzy sets representing compatible concepts. This
hampers the transparency and interpretability
of the model (Babuska et al., 1998). In order
to look for the existence of similar fuzzy sets,
the parameters of the membership functions are
verified as follows.

Considering each domain, the membership func-
tions whose center values are too close are con-
sidered similar. In this way, these membership
functions are merged, and the new center value
is the average of the similar centers, and the
new standard deviation value is the highest value
among the respective standard deviation values.
After this process, the rules are refreshed with the
new membership functions.

This simplification procedure is concerned with
the merging of the membership functions that
describe almost the same region on each domain.
Reduction of the rule base is only a consequence
of this merging. The structure improvement per-
formed in this phase plays an important role in
the fuzzy model identification because it increases
the model interpretability and transparency, two
essential features of the fuzzy systems (Guillaume,
2001).

2.6 Conflicting rules treatment

The union of similar fuzzy sets can generate con-
flicting rules, i.e., rules with the same antecedent
part, and distinct consequents. In order to over-
come this problem, a variant of the well-known
confidence factor (CF ) (Quinlan, 1987) measure
is used. Let A → C denote a rule, in which A is
the rule antecedent (a conjunction of conditions)
and C is the rule consequent (the value predicted
for the goal attribute). The CF is denoted by the
equation (11) (Nagai and Arruda, 2002):

CF (Ri) =
|A ∧ C| − 1/2

|A|
, (11)

where |.| denotes the cardinality.

In a group of conflicting rules, the rule with the
highest value of CF is kept, and the others are
removed from the rule base.

3. PROPOSED SOFT SENSOR

This section summarizes the fuzzy model identifi-
cation method:

• Step 1: Select the fuzzy model input set from
the secondary variables set by means of the
algorithm in figure 2;

• Step 2: Select the input-output lag space by
means of the algorithm in figure 3;

• Step 3: Establish the training and test data
sets, the initial rule base size ncr, the FCM
algorithm parameter m, and the acceptable
error rate ξ;

• Step 4: Apply the FCM algorithm to the
training data set, in order to obtain ncr
clusters, it means, the initial rule base;

• Step 5: Realize the clusters projection into
each variable domain to get the point-wise
defined membership functions, and calculate
the standard deviation from these values;

• Step 6: Simplify the initial rule base by merg-
ing the similar membership functions, and re-
fresh the rule base with the new membership
functions;

• Step 7: Verify the conflicting rules existence
in the rule base, calculate the confidence
factor for each of them, and the rule with
the highest confidence factor value is kept,
and the others are removed;

• Step 8: Calculate the test error by applying
the obtained fuzzy model. If the error is
bigger than ξ, then return to the Step 4.
Finish the procedure, otherwise.

4. RESULTS

This section presents the simulation results ob-
tained from the application of the proposed fuzzy



model identification methodology. The proposed
methodology has been applied for the develop-
ment of a soft sensor (inferential model) to infer
the top composition of a distillation column.

The simulation data has been obtained from
(Fabro, 2003; Neves-Jr and Aguilar-Martin, 1999),
in which a binary distillation column that sepa-
rates water from methanol has been modeled by
means of HY SY S c© 2 . The column has 20 trays
(figure 7) and it presents the following behaviour.

• feed composition: 50% water and 50% methanol;

• feed temperature: 75.9oC;

• feed molar flow: 236 kgmol/h (inserted at tray 14);
• reboiler level: 50% (liquid volume);

• bottom product flow and composition: 152 kgmol/h,

with methanol concentration of less than 0.01%;
• condenser level: 20% (liquid volume);

• distillate flow and composition: 85 kgmol/h, with

methanol concentration more than 99.9%;
• dry initial conditions for the reboiler, condenser and

trays;

• reflux flow: 247 kgmol/h;
• column pressure: 1 atm (101.3 kPa);

• temperature profile:
· tray 9: 67.54oC;

· tray 13: 86.41oC;

· tray 16: 101.8oC;
· tray 18: 102.3oC.

Fig. 7. The distillation column.

The temperature sensors are positioned at the
trays 9, 13, 16, and 18. As the temperature at
these trays approaches the above-specified values,
the column is approaching its steady-state condi-
tions. When the temperature profile is reached,
the column is at its nominal production, and the
startup procedure can be considered ended. At
this point, the composition of the top and bottom
flows are better than 99.9% pure.

In this case, the simulations provide the com-
positions information, but in the real processes,
these composition values are often obtained from
laboratory analysis (Qin, 1996). In Fabro (2003)
neural estimators (neural soft sensors) have been

2 HYSYS 3.0, HYPROTECH Ldt.

developed to infer the top and bottom composi-
tions by using the temperature readings. In this
paper a soft sensor based on fuzzy model is devel-
oped to infer the top product composition during
the startup procedure.

At the beginning of the startup, when the column
is still being warmed, it is not critic to know the
compositions. As the startup advances, it is more
important to obtain good predictions, especially
when the compositions approach the value of
98%. So, the developed soft sensor must infer the
compositions of the top product (distillate) from
90% to 99% of purity.

The available secondary variables are described
in table 1. The table 2 presents the selected
input variables (u1, . . . , u7), and the number of
membership functions for each model variable
(including the output variable) obtained after the
fuzzy model simplification procedure (section 2.5).

Table 1. Secondary variables descrip-
tion.

# variable name description

1 feed1 pv feed molar flow

2 reflux pv condenser reflux

3 pv press top column pressure
4 bottom pv reboiler liquid level

5 top pv condenser liquid level

6 tray9 temperature of tray 9
7 tray13 temperature of tray 13

8 tray16 temperature of tray 16

9 tray18 temperature of tray 18
10 cond flow flow to condenser

11 top flow top product flow
12 bottom flow bottom product flow

Table 2. Selected variables.

# variable name # membership functions

u1 feed1 pv 8
u2 top pv 8

u3 tray9 9

u4 tray13 10
u5 tray16 8

u6 tray18 7

u7 cond flow 8

u8 methanol composition 9

y methanol composition 11

As described in table 2, seven input variables have
been chosen, and by considering a feedforward
predictive model with the selected lag, the fuzzy
model parameters are shown in table 3. In the
present implementation, in order to avoid a very
time-consuming computation, the number of past
inputs and output is increased simultaneously.
Thereby, as presented in table 3, lagy = lagu = 2.

The model performance is shown in table 4, in
which the employed performance indexes have
been the mean-square error (mse) and the nor-
malized root mean-square error (nrmse) (Nagai
and Arruda, 2002).



Table 3. The fuzzy model parameters.

description value

initial rule base size 100
simplified rule base size 45

number of input variables 15
number of output variables 1

selected lag 2

Table 4. The performance indexes.

train test total

mse 0.0482 0.0505 0.0494

nrmse (%) 0.2287 0.2348 0.2318

Figure 8 shows the methanol composition infer-
ence generated by the obtained soft sensor (doted
line) and the expected composition (solid line).

Fig. 8. Methanol composition inference.

5. CONCLUDING REMARKS

This work presents a fuzzy model identification
approach to build soft sensors. This approach is
done in three phases. First of all, the input vari-
ables to the soft sensor are selected by applying
Kohonen maps and the Lipschitz quotients are
used to select the structure of a linguistic fuzzy
model. Second, the FCM algorithm is applied
in order to find the model variables membership
functions, and also the rules that describe the
process behaviour. In the third phase, the similar
membership functions are merged of such way to
eliminate the redundancy on each variable domain
description. This simplification can also reduce
the rule base size, increasing the model inter-
pretability and transparency.

The proposed methodology has been evaluated by
the construction of a soft sensor for the inference
of the distillation column top composition. Some
of the obtained results in section 4 indicate that
the methodology has been capable to generate a
composition estimator whose performance could
be improved through fuzzy model refinement tech-
niques, such as a method for tuning of the mem-
bership functions parameters, and a method for
the evaluation of each rule relevance in order to
reduce the rule base size.
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