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Abstract: The paper deals with a new problem of system structure reconstruction
in the area of strictly causal system representations. The proposed approach to the
problem solution is based on generalization of Tellegen’s theorem well known from
electrical engineering. Consequently, mathematically as well as physically correct
results are obtained. Some known and often used system representation structures
are discussed from the developed point of view. Copyright c©2005 IFAC
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1. INTRODUCTION

It is familiar that there are two basic approaches
to system modelling. The first one consists in
using mathematical formulas and physical tools
(a causality principle, different forms of conserva-
tion laws, power balance relations, etc.) in order
to describe system behavior. It has successfully
been used in many fields of science and engi-
neering so far. However, there are also situations
where physical laws are not known or cannot be
expressed in a proper mathematically exact form.
In that case the second basic approach to system
modelling can be turned. It is based on identifica-
tion methods working in terms of experimentally
gained data (Sorenson, 1980), (Willems, 1991). It
is possible to divide the methods into two groups:
parametric and non-parametric. If any prior infor-
mation about a system structure is not assumed
then non-parametric methods are used for system
identification. On the other hand, imagine that
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a physical structure of an investigated system is
known then parametric methods will be used and
subsequently more adequate results should be ex-
pected (Mayer and Hrušák, 2003). Unfortunately,
any reliable explicit knowledge about a physical
system structure is more likely an exception than
a rule. Therefore, a system structure is mostly
chosen on behalf of heuristic arguments and then
it is verified whether obtained quantitative re-
sults are not in conflict with obvious qualitative
expectations concerning regular system behavior
and/or results of additional experiments.

The main aim of the contribution is to formulate
a fundamental problem of system structure recon-
struction and in the sequel propose its possible so-
lution. The approach starts from the assumption
that any physically correct system representation
should not be at variance with not only measured
data but also a form of an energy conservation
principle. It is shown in the paper that introducing
the principle as the attribute of a causal system
representation seems to be the most natural and
appropriate way as it can be done.



2. MOTIVATING EXAMPLES

At the beginning, several simple examples are
given in order to introduce natural concepts of
physically correct and incorrect system represen-
tation structures.

Example 1: Let us have a real system with the
following physical structure:

R 1

R 2

I(t) A

L

C1

C2
R i

i(t)

R 4 R 3

Fig. 1. Physical structure of a real system

where the physical meaning of the system parame-
ters is known. On the other hand, numerical values
of the parameters do not have to be known at all.
Further, it is possible to get a mathematical model
of the system as the physical state-space strictly
causal representation:

R(S) :
dx(t)

dt
= Ax(t) + Bu(t) (1)

y(t) = Cx(t) (2)

when proper state variables are injected and then
energy conservation laws are used. Hence, the
transfer function of the system is given as follows:

F (s)=
Y (s)
U(s)

=C[sI−A]−1B=
k(s)

s3+a1s2+a2s+a3

(3)

where a1, a2, a3 depend on the real system param-
eters. k(s) is given by input signal characteristics.

Example 2: Let us suppose for now that the only
information we have about the system is the
transfer function without knowing any algebraic
structure of the matrices A, B, C. A realization
problem (Kalman, 1963) is to find the matrices
in such a way that the relation (3) holds. It is
known that the solution of the problem is not
unique because the specific algebraic structure of
the matrices depends on the choice of the state
variables. However, it is possible to determine the
structure by carrying the transfer function F (s)
into the differential equation:

d3y(t)
dt3

+ S(t) = ku(t) (4)

where u(t) = b2
d2w(t)

dt2 + b1
dw(t)

dt + b0w(t) and a
function S(t) defined as the scalar product of a
parameter vector and a state vector:

S(t) = 〈Θ, x(t)〉 ⇒ S(t) =
3∑

k=1

Θkxk(t) (5)

describes a relation between the state variables
and structure of the system representation (1), (2).
Since the parameter vector Θ is specified by F (s),
the natural choice of the state variables follows
from the form of the function:

S(t) = a1x1(t) + a2x2(t) + a3x3(t). (6)

Thus, the matrices are the following and imply the
topological structure of the system representation
shown on the Fig. 2:

A=



−a1 −a2 −a3

1 0 0
0 1 0


 , B=




k
0
0


 , CT =




0
0
1


. (7)

u(t) y(t)x 1
x 2 x 3

-a1

-a2

-a3

k

Fig. 2. Topological structure induced by A,B,C

Example 3: Let us take the orthonormal state
transformation:

x̄(t) = Tx(t), T =




0 0 1
0 1 0
1 0 0


 . (8)

It produces another system representation with
the different algebraic structure of the matrices:

Ā=




0 1 0
0 0 1
−a3 −a2 −a1


 , B̄=




0
0
k


 , C̄T =




1
0
0


 (9)

but with the same topological structure shown on
the Fig. 3:

u(t) y(t)x 3 x 2 x 1

-a1

-a2

-a3

k

Fig. 3. Topological structure induced by Ā,B̄,C̄

It is easy to verify that the resulting system
representation structures are mathematically cor-
rect for any real values of the parameters. Nev-
ertheless, the structures cannot be accepted as
physically correct in the sense that both a signal
power balance relation and signal energy additiv-
ity are required to hold simultaneously. To explain
the situation, assume that the parameters values
make the system be dissipative. The output signal
power Po is defined by the following relation:

Po(t) = y2(t) = 〈x̄T (t)C̄T , C̄x̄(t)〉 = x̄2
1(t). (10)



Then the output signal power balance relation
reads (Hrušák and Černý, 2003):

dĒo[x̄(t)]
dt

= −Po(t) (11)

and holds if and only if the output signal energy
Ēo[x̄(t)] has the form:

Ēo[x̄(t)]=x̄2
1(t)+

∆1

∆2
[∆1x̄1(t)+x̄2(t)]2+

+
∆2

1

∆3
[
∆2

∆1
x̄1(t)+∆1x̄2(t)+x̄3(t)]2(12)

where ∆1 =a1, ∆2 =a1a2−a3, ∆3 =a3(a1a2−a3)
are Hurwitz minors. It is obvious that the energy
function does not obey the additivity requirement.

Example 4: Consider the same system (3) but with
another algebraic structure of the matrices. For
now the state variables are chosen in such a way
that the signal energy additivity requirement:

E∗
o [x∗(t)]=δ1E

∗
1 [x∗1(t)]+δ2E

∗
2 [x∗2(t)]+δ3E

∗
3 [x∗3(t)]

(13)

as well as the signal power balance relation hold.
Let us take the following state transformation:

x∗1(t) = x̄1(t) (14)

x∗2(t) = ∆1x̄1(t) + x̄2(t) (15)

x∗3(t) =
∆2

∆1
x̄1(t) + ∆1x̄2(t) + x̄3(t) (16)

existing for ∆1,∆2 6= 0. Then the energy function
(12) becomes to:

E∗
o [x∗(t)] = x∗

2

1 (t) +
∆1

∆2
x∗

2

2 (t) +
∆2

1

∆3
x∗

2

3 (t) (17)

and the matrices of the system representation
have the following algebraic structure:

A∗=



−α1 1 0
−α2 0 1

0 −α3 0


 , B∗=




0
0
k


 , C∗

T

=




1
0
0


(18)

where α1 = ∆1, α2 = ∆2
∆1

, α3 = ∆3
∆1∆2

. The
corresponding topological structure of the repre-
sentation is shown on the Fig. 4:

u(t) y(t)
x 3 x 2 x 1k

-a
1

-a
3 -a

2

Fig. 4. Topological structure induced by A∗,B∗,C∗

3. CORRECT SYSTEM REPRESENTATIONS

It seems to be quite obvious that two different
issues should be distinguished. Mathematical cor-
rectness being equivalent to a state minimality
property of a system representation and physical
correctness closely related to energy additivity
and a form of the signal power balance relation.

3.1 Mathematically correct system representations

Consider the representation R(S) of a system S
in the form:

R(S) :
dx(t)

dt
= A(t)x(t) + B(t)u(t) (19)

y(t) = C(t)x(t) (20)

where x(t) ∈ Rn is a state, u(t) ∈ Rr is an input,
y(t) ∈ Rp is an output, 1 ≤ r ≤ n, 1 ≤ p ≤ n and
matrices A(t), B(t), C(t) are known. Assume that
the system S is asymptotically stable and its rep-
resentation R(S) is of the minimum order n, i. e. it
is controllable and observable. It implies that con-
trollability and observability Grammian matrices
Wc and Wo exist (Slavinsky and Antoulas, 2004).
They are symmetric, positive definite and satisfy
the following Lyapunov-like equations:

A(t)Wc(t)+Wc(t)AT (t)+
dWc(t)

dt
=−B(t)BT (t)

(21)

AT (t)Wo(t)+Wo(t)A(t)+
dWo(t)

dt
=−CT (t)C(t).

(22)

Those representations induce an equivalence class
of minimum, controllable, observable and asymp-
totically stable representations given by the state
equivalence conditions:

Ā(t) = [T (t)A(t) +
dT (t)

dt
]T−1(t) (23)

B̄(t) = T (t)B(t) (24)

C̄(t) = C(t)T−1(t) (25)

produced by the state transformations:

x̄(t) = T (t)x(t), x(t) = T−1(t)x̄(t). (26)

3.2 Physically correct system representations

Consider the time-invariant case of the represen-
tation (19), (20). A controllability Grammian ma-
trix Wc at a time instant t is defined as follows:

Wc(t) =

t∫

t0

eAτBBT eAT τdτ, 0 < t0 < t (27)



and has two properties:

WT
c (t) = Wc(t) ≥ 0 (28)

Im[Wc(t)] = Im[Hc(A,B)] (29)

where Hc(A, B) is a controllability matrix. Sup-
posing that Wc(t) is invertible then the minimum
energy input signal u(t) exists and the minimum
input signal energy Eu corresponding to state
transfer from an initial state x(t0) to x(t) is given
by the relation:

Eu(t) = xT (t)W−1
c (t)x(t). (30)

Consequently, the minimum input signal energy
required for state transferring from the initial
state x(t0) to x(t1) for t → ∞ is given by the
relation:

Eu = xT (t1)W−1
c x(t1) (31)

under the assumption that the couple (A,B) is
controllable and the asymptotical stability prop-
erty is held. Then the Lyapunov equation:

AWc + AT Wc = −BBT (32)

expresses the form of an input-state energy trans-
fer balance relation.

Similarly, an observability Grammian matrix Wo

at a time instant t is defined as follows:

Wo(t) =

t∫

t0

eAT τCT CeAτdτ, 0 < t0 < t (33)

and also has two properties:

WT
o (t) = Wo(t) ≥ 0 (34)

Ker[Wo(t)] = Ker[Ho(A,C)] (35)

where Ho(A,C) is an observability matrix. Fur-
ther, output signal energy Ey at a time instant
t caused by an initial state x(t0) is given by the
relation:

Ey(t) = xT (t0)Wo(t)x(t0). (36)

Subsequently, the largest observation energy pro-
duced by the initial state x(t0) for t →∞ is given
by the relation:

Ey = xT (t0)Wox(t0) (37)

supposing that the couple (A,C) is observable and
the asymptotical stability property is held. Then
the Lyapunov equation:

AT Wo + AWo = −CT C (38)

expresses the form of a state-output energy trans-
fer balance relation.

It follows from the energy additivity requirement:

E(t) =
n∑

i=1

δiEi[xi(t)], δi 6= 0 (39)

that only those system representations can be
accepted as physically correct whose Grammian
matrices produced by the triplet (A, B,C) are
diagonal and non-singular:

Wc or Wo = W, W = diag{δ1, . . . , δn}. (40)

4. PROBLEM FORMULATION

Consider the external representation of a strictly
causal system S in the form:

dny(t)
dtn

− u(t)=F [y(t),
dy(t)
dt

, . . . ,
dn−1y(t)
dtn−1

, Θ]

(41)

where Θ = Θ1, . . . , Θn and a function F is known.
The aim is to find an equivalence class of functions
S̄ for any given parametrization Θ in such a way
that an internal representation induced by the
equation:

dny(t)
dtn

+ S̄[x̄(t), Θ̄] = u(t) (42)

will not be in conflict with the signal power bal-
ance relation and a corresponding energy function
will have the additivity property. Such an input-
state-output representation will be called phys-
ically correct. Subsequently, having an abstract
mathematically correct system representation, the
internal structure reconstruction problem consists
in finding specification of state and parameter vec-
tors in order that physical correctness will follow.

5. TELLEGEN’S THEOREM AND ITS
GENERALIZATION

In order to explain essential features of the theo-
rem (Penfield et al., 1970), consider an arbitrar-
ily connected electrical network with n compo-
nents and choose associated reference directions
for branch voltages vk and currents ik. Let Kirch-
hoff’s laws be given by the following equations:

Ai(t) = 0, Bv(t) = 0 (43)

where A is a node incidence matrix, B is a loop
incidence matrix and i(t), v(t) are defined as
follows:

i(t)=[i1(t), . . . , in(t)]T , v(t)=[v1(t), . . . , vn(t)]T .

(44)



Let the vectors i(t), v(t) be the elements of an
Euclidean space En and invoke the inner product:

〈i(t), v(t)〉 =
n∑

k=1

ik(t)vk(t). (45)

Let I be the set of all the vectors i(t) and V the set
of all the vectors v(t) satisfying the equations (43).

Theorem 1: (Tellegen’s theorem)

If i(t) ∈ I and v(t) ∈ V then it holds:

〈i(t), v(t)〉 = 0. (46)

Remark 1: It can also be expressed in the differ-
ence form:

N∑

k=1

N∑

j=1

(wkv
′
jk−w

′
kvjk)+

N∑

k=1

(wkx
′
k−w

′
kxk)=0

(47)

using for digital filter design where N is a number
of nodes and wk, vjk, xk, w

′
k, v

′
jk, x

′
k are node

variables, branch outputs and source node values
of the considered first and second oriented graphs
with the same topological structure (Fettweis,
1971), (Crochiere, 1974).

Remark 2: The sets I, V are orthogonal subspaces
of En. Moreover, they span En.

It is worth noticing a close relation between phys-
ical correctness and Tellegen’s theorem. It is also
important to realize that the branch currents and
voltages are chosen arbitrarily complied only with
Kirchhoff’s laws. It implies that different sets Ī,
V̄ of the branch currents and voltages satisfying
the laws can be selected and the relation:

〈̄i(t), v̄(t)〉 = 0, ī(t) ∈ Ī , v̄(t) ∈ V̄ (48)

still holds. The last deduction will be used later
as motivation for introducing a group of system
equivalence transformations on which generaliza-
tion of Tellegen’s theorem is based.

5.1 Generalized Tellegen principle

Consider the representation R(S) of a system S
in the form:

R(S) :
dx(t)

dt
= f [x(t), u(t)] (49)

where x(t) ∈ X is a state, X ⊂ Rn is a smooth
manifold and f : X → Rn is a smooth vector field
parameterized by an input u(t). Let E : X → R
be a smooth scalar field. It is well known that the
Lie derivative of the scalar field E with respect to

the vector field f is defined by the dual product
as follows (Serre, 2001):

Lf{E[x(t)]}= 〈dE[x(t)], f [x(t), u(t)]〉 =

=
n∑

i=1

∂E[x(t)]
∂xi(t)

fi[x(t), u(t)]. (50)

Remark 3: The only difference between the rela-
tions (46) and (50) is that both the factors are
column vectors in the first one.

Theorem 2: (generalized Tellegen principle)

∃E, f,E[x(t)] =
n∑

i=1

Ei[xi(t)],

dx(t)
dt

= f [x(t), u(t)] : Lf{E[x(t)]} = 0.

(51)

Proof:

∀E, f, E ⊥ f : Lf{E[x(t)]} = 0. (52)

Trivially,

E[x(t)] = E ⇒ ∀f : Lf{E} = 0. (53)

Corollary 1: (physically correct system represen-
tation structures)

∃ϕ, T, T−1, x∗(t) = T [x(t)], u(t) = ϕ[v(t), x∗(t)] :

〈x∗T

(t),
dx∗(t)

dt
〉= 0. (54)

Proof: Consider a class of state and feedback
equivalent representations:

dx∗(t)
dt

= A∗x∗(t) + B∗K∗x∗(t) + B∗v(t) (55)

y(t) = C∗x∗(t). (56)

It can easily be shown that if the algebraic struc-
ture of the matrices A∗, B∗, C∗, K∗ is as follows:

A∗=




−α1 α2 0 · · · 0
−α2 0 α3 · · · 0

...
. . . . . . . . .

...
0 · · · −αk−1 0 αk

0 · · · 0 −αk 0




,B∗=




0
...
0
βk


(57)

C∗
T

=




γ1

0
...
0


,K∗=




0
...
0
κk


 , k = 2, . . . , n (58)

then the corollary 1 holds where x∗(t) = Tx(t),
T = H∗

c [(A∗, B∗)] ·H−1
c [(A,B)] in linear case.

Physically correct structure of the system repre-
sentation (55), (56) is shown on the Fig. 5.



Fig. 5. Physically correct representation structure

6. ILLUSTRATIVE EXAMPLE

Example 5: Let us have a real system with the
following physical structure (Hrušák et al., 2004):

L

C

Eo

R 1

R 2

i1
i2

Vu y

Fig. 6. Physical structure of a real system

Substituting the system parameters to (57), (58)
we get for n = 2:

α1 =
1

R2C
, α2 =

1√
LC

, β2 =
1√
LC

, γ1 = 1,

κ2 =−R1

√
C

L
. (59)

Then it holds that:

〈x∗T

(t),
dx∗(t)

dt
〉=−α1x

∗2
1 (t) + β2x

∗
2(t)v(t) +

+ β2κ2x
∗2
2 (t)=PD(t) + PI(t)=0

(60)

where input power PI and output dissipation
power PD are given by the relations:

PI(t) = β2x
∗
2(t)v(t) + β2κ2x

∗2
2 (t) =

= E0i1(t)−R1i
2
1(t) (61)

PD(t) =−α1x
∗2
1 (t) = −u2

c(t)
R2

, (62)

x∗1(t) = uc(t)
√

C, x∗2(t)= i1(t)
√

L, v(t)=E0

√
C.

(63)

7. CONCLUSIONS

The paper connects fundamental attributes of
real-world situations such as causality, physical
correctness and different forms of conservation
laws with notions and results of electrical network
theory as well as basic approaches and concepts
of general system theory such as state minimality,
signal power, signal energy, equivalence relation,
asymptotical stability, controllability, observabil-
ity and signal filtering (Černý and Hrušák, 2004),
(Černý and Hrušák, 2005).
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