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Abstract: This paper is concerned with robust performance analysis of sampled-
data systems. In particular, we consider the uncertainty of a parameter in the
continuous-time plant and study the problem of determining the allowable range
of the uncertainty around the origin over which the sampled-data system remains
internally stable and a prescribed L2-induced norm level is retained. We provide
an effective iterative procedure with guaranteed convergence that gives an exact
allowable parameter range, together with rigorous arguments for the convergence.
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1. INTRODUCTION

Robust stability and robust performance are very
fundamental issues in control system analysis and
synthesis, and the widespread use of digital con-
trollers these days has led us to the treatment of
control systems as sampled-data systems to study
these issues, in which the intersample behavior
is dealt with directly and exactly. Among such
studies about sampled-data systems are (Chen and
Francis, 1991; Bamieh and Pearson, 1992; Toivo-
nen, 1992; Kabamba and Hara, 1993; Dullerud
and Glover, 1993; Sivashankar and Khargonekar,
1993; Yamamoto, 1994), just to name a few. In
particular, (Sivashankar and Khargonekar, 1993) is
a pioneering study in robust performance analysis
of sampled-data systems, which gave a necessary
and sufficient condition for robust performance by
extending the so-called main loop theorem into the
context of sampled-data systems.

As for robust internal stability of sampled-data sys-
tems against parameter uncertainties, a novel and
efficient iterative method was provided recently in
(Hagiwara and Mugiuda, 2004), which is guaran-
teed to be convergent in the sense that the stability
margin with respect to the parameter uncertain-
ties can be determined exactly. This paper aims
at extending that related study so that not only
robust stability but also robust performance can be
taken into account. To be more precise, we study
to determine the allowable range of a parameter in
the continuous-time plant for which the sampled-
data system remains internally stable and at the
same time a prescribed performance level is re-
tained between the given disturbance input w and
controlled output z under the measure of the L2-
induced norm. The method we provide is also an
iterative method with guaranteed convergence that
is free from the gridding of the parameter space,
and thus is exact. In other words, the significance

of this paper can be regarded as providing a specific
and exact numerical computation procedure that
achieves the conceptual robust performance test
suggested by the main loop theorem for sampled-
data systems (Sivashankar and Khargonekar, 1993)
mentioned above.

The contents of this paper are as follows. In Sec-
tion 2, we review some fundamental results on ro-
bust stability of sampled-data systems. Section 3
constitutes the main contributions of this paper.
In Subsection 3.1, we first formulate the problem
we study in this paper. Next in Subsection 3.2,
we consider the scaling of sampled-data systems
with two parameters, and give some fundamental
results with rigorous proofs for robust performance
analysis. Then in Subsection 3.3, we introduce an
iterative method for robust performance analysis of
sampled-data systems against parameter uncertain-
ties, and provide a proof for the convergence of the
iterative method. Numerical examples are studied
in Section 4.

For notational simplicity, ‖ · ‖ is used throughout
the paper to denote the L2 norm of a signal and
the L2-induced norm of an input-output mapping;
the distinction will be clear from the context.

2. ROBUST STABILITY OF SAMPLED-DATA
SYSTEMS

This section is devoted to reviewing some funda-
mental results on robust stability of sampled-data
systems.

Let us consider the sampled-data system Σ shown
in Fig. 1, in which P denotes the continuous-
time generalized plant, Ψ the discrete-time con-
troller, S the ideal sampler, and H the zero-order
hold. Also, solid lines and dashed lines represent
continuous-time and discrete-time (vector) signals,
respectively, and the underlying sampling period
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Fig. 1. Open-loop sampled-data system Σ .

-w

P

z

-y S

¾Ψ

- H -u

6+
d

¾e
∆

f

?d+-p+ ¾
+q

Fig. 2. Closed-loop sampled-data system Σ∆.
will be denoted by h. We assume that the state-
space representations of P and Ψ are given respec-
tively by

dx

dt
= Ax + B1w + B2u, z = C1x + D11w + D12u,

y = C2x (1)

and

ξk+1 = AΨξk + BΨyk, uk = CΨξk + DΨyk (2)

where yk = y(kh) and u(t) = uk (kh ≤ t < (k +
1)h). In other words, we assume that the direct
feedthrough matrices D21 from w to y and D22
from u to y are both zero, which are standard
assumptions in the study of sampled-data systems.

For lack of better terminologies, we call Σ an open-
loop sampled-data system, while if w is given as
w = ∆z with some causal mapping ∆, then we
call the resulting system a closed-loop sampled-
data system, which we denote by Σ∆. Also, the
associated input-output mapping from [pT , qT ]T

to [fT , zT ]T in Fig. 2 will be denoted by G∆ if
it is well-defined. If G∆ maps L2 into L2, and if
its L2-induced norm is bounded, then G∆ is said
to be L2-stable. Here, we have the following result
about stability of closed-loop sampled-data systems
(Hagiwara, 2002).

Proposition 1. Suppose that ∆ is a finite-dimensional
linear time-invariant or h-periodic system and that
both Σ and ∆ are internally stable. Then, Σ∆ is
internally stable if and only if G∆ is L2-stable.

For the sake of notational simplicity, we denote by
∆∆∆(γ;m,n) the set of all linear causal h-periodic
system ∆ with input dimension n and output
dimension m such that the L2-induced norm ‖∆‖
is strictly less than γ. Then, we have the following
result, which is essentially the necessity assertion
of Theorem 5.1 in (Sivashankar and Khargonekar,
1993) but is stated in a specialized form that is
useful in the following arguments † .

† In Theorem 5.1 of (Sivashankar and Khargonekar, 1993), it
was proved that ‖Σ‖ ≤ 1/γ follows under a robust stability
condition that is slightly stronger than the robust stability
condition of G∆ assumed in Proposition 2 (i.e., discrete-
time external inputs were also taken into account there).
Fortunately, it is not hard to see that the necessity proof

Proposition 2. Suppose that Σ is internally stable.
If for some γ > 0, the input-output mapping
G∆ associated with the closed-loop sampled-data
system Σ∆ in Fig. 2 is L2-stable for all ∆ ∈
∆∆∆(γ; dim(w),dim(z)), then ‖Σ‖ ≤ 1/γ.

3. ROBUST PERFORMANCE ANALYSIS OF
SAMPLED-DATA SYSTEMS

3.1 Problem Formulation

In this section, we consider the (semi)closed-loop
sampled-data system Φ∆ shown in Fig. 3. Here,
the causal mapping ∆ represents the uncertainty
in the continuous-time plant, while w and z denote
the disturbance input and the controlled output,
respectively. In other words, we suppose that the
generalized plant Π with η set to ∆ζ, which we
denote by Π∆, corresponds to the generalized plant
P in Σ , and thus Φ∆ corresponds to Σ with the
continuous-time generalized plant being subject to
some uncertainty represented by ∆; by dealing
with Φ∆, we are interested in analyzing the dis-
turbance rejection performance ‖Φ∆‖ attained by
the discrete-time controller Ψ under the presence of
the plant uncertainty ∆. To facilitate the following
arguments, we also consider the open-loop sampled-
data system shown in Fig. 4, which we denote by
Φ. Note carefully the difference between Φ and Φ0
(i.e., Φ∆ with ∆ set to 0); the dimension of the
input of Φ∆ is dim(w) (even if ∆ = 0) while that of
Φ is dim(w) + dim(η), and similarly for the output
dimensions. Further note that the same comments
apply also to Π and Π∆.

To conform to the assumptions about the direct
feedthrough matrices D21 and D22 stated in the
preceding section, we assume that the generalized
plant Π satisfies the condition that the direct
feedthrough matrices to y from w, η and u are
all zero. Also, we assume that ∆ is a real matrix,
which corresponds to considering the uncertainties
in the real parameters of the plant. For the sake
of simplicity, we further assume that ∆ = kI,
assuming that dim(η) = dim(ζ), where k is a
real scalar. In spite of this restrictive assumption,
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Fig. 3. Sampled-data system Φ∆.
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therein remains valid even under the relaxed condition in
Proposition 2.



the significance of this paper lies in establishing
that under such a situation, we can perform exact
and effective robust performance analysis via an
iterative method, including rigorous arguments for
the convergence proof about the iteration.

In the sequel, we assume k > 0 without loss of
generality. Also, when ∆ = kI, we simply denote
Φ∆ by Φk (rather than ΦkI) for simplicity; similar
shorthand notations are used throughout the paper.

We are now in a position to state our standing as-
sumption, as well as the formulation of the problem
studied in this paper.

Assumption 1. The discrete-time controller Ψ is
internally stabilizing. That is, Φ (or equivalently,
Φ0) is internally stable. Furthermore, ‖Φ0‖ < 1.
That is, the L2-induced norm of the subsystem from
w to z is strictly less than 1 in Φ.

Problem 1. Find the number kmax, which is defined
as the largest k̄ > 0 such that Φk is internally stable
and ‖Φk‖ < 1 for all k ∈ [0, k̄).

A similar problem can readily be considered for
k < 0 by slightly modifying the generalized plant
Π (i.e., by “replacing η by −η”), and the pair of
these two problems corresponds to finding the range
of the real parametric uncertainty k for which Φk
remains internally stable and the performance level
‖Φk‖ < 1 is retained. It is obvious that for any
γ > 0, a more general performance level ‖Φk‖ < γ
can also be dealt with by appropriately scaling the
generalized plant Π .

3.2 Robust Performance Analysis via Two-Parameter
Scaling

We consider the system Φ(α, β) shown in Fig. 5,
which is obtained by scaling Φ with nonnegative
numbers α and β. When β = 1, we denote Φ(α, β)
simply by Φ(α), and when α = 1, we denote
Φ(α, β) simply by Φ(β); in spite of the abuse of
the same notation, the input-weighted system Φ(α)
and the output-weighted system Φ(β) could be
distinguished from the context (or the argument
α or β). It is not hard to show the following
fundamental result from the definition of the L2-
induced norm and linearity of the input-output
mapping of Φ.

Lemma 1. Suppose that Φ is internally stable.
Then, ‖Φ(α, β)‖ is continuous in {(α, β) |α ≥
0, β ≥ 0}. Furthermore, ‖Φ(α)‖ and ‖Φ(β)‖ are
nondecreasing with respect to α ≥ 0 and β ≥ 0,
respectively.

Proof. It is straightforward to show that ‖Φ(β)‖
is nondecreasing if we note that ‖[β̃ζT , zT ]T ‖ ≥
‖[βζT , zT ]T ‖ whenever β̃ ≥ β. To establish that
‖Φ(α)‖ is nondecreasing is also straightforward if
we use the same property on η and w, but it takes
space to describe the full details, and hence the
proof is omitted. The first assertion is also easy
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Fig. 5. Scaled system Φ(α, β).

to establish, but since giving its proof is helpful
to some extent for the subsequent arguments, we
devote some space for the proof. For notational
simplicity, let us partition Φ into (Φ)ij (i = 1, 2; j =
1, 2) conformably to the input (ηT , wT )T and the
output (ζT , zT )T (hence, Φ22 is nothing but Φ0).
Also, let us denote by (ζ ′, z) and (ζ̃ ′, z̃) the output
of Φ(α, β) and Φ(α̃, β̃), respectively, to the common
input (η′, w). Then, by linearity of Φ, it readily
follows that∣∣∣∣

∥∥∥∥
[

ζ̃ ′
z̃

]∥∥∥∥−
∥∥∥∥
[

ζ ′
z

]∥∥∥∥
∣∣∣∣ ≤

∥∥∥∥
[

ζ̃ ′
z̃

]
−

[
ζ ′
z

]∥∥∥∥
≤ (α̃β̃ − αβ)‖Φ11‖ · ‖η′‖+ (α̃− α)‖Φ21‖ · ‖η′‖

+(β̃ − β)‖Φ12‖ · ‖w‖
≤ M

∥∥∥∥
[

η′
w

]∥∥∥∥ (3)

where M := (α̃β̃ − αβ)‖Φ11‖ + (α̃ − α)‖Φ21‖ +
(β̃ − β)‖Φ12‖. Since ‖Φij‖ (i = 1, 2; j = 1, 2) is
finite and independent of (α, β), it is easy to see
that M can be made arbitrarily small by letting
|(α̃, β̃)− (α, β)| small enough. Hence, the assertion
follows immediately.

We now state the following result, which forms a ba-
sis of our robust performance analysis of sampled-
data systems.

Theorem 1. Suppose that Φ is internally stable and
‖Φ(α, β)‖ = 1 for some α > 0 and β > 0. Further
suppose that either (or both) of the following two
conditions holds:

(i) ‖Φ(α′, β)‖ < 1 whenever 0 ≤ α′ < α.
(ii) ‖Φ(α, β′)‖ < 1 whenever 0 ≤ β′ < β.

Then, Φk is internally stable and ‖Φk‖ < 1 when-
ever 0 ≤ k < αβ.

Remark 1. The result may not be surprising in the
sense that a similar result could be obtained by
applying the small-gain theorem in terms of the
L2 norm, together with Theorem 6.1 (a kind of
the so-called main loop theorem) in (Sivashankar
and Khargonekar, 1993), which is a pioneering work
in the robust stability and performance analysis
of sampled-data systems. However, such arguments
will not immediately and explicitly lead to the inter-
nal stability assertion of Φk (0 ≤ k < αβ), as long
as the statement of Theorem 6.1 in (Sivashankar
and Khargonekar, 1993) and related definitions and
arguments are scrutinized. This issue could be re-
solved if we apply Proposition 1, but another dif-
ficulty in the arguments based on Theorem 6.1
of (Sivashankar and Khargonekar, 1993) is that
an immediate direct consequence will be merely
‖Φk‖ ≤ 1 (0 ≤ k < αβ), which is a slightly weaker
assertion because the inequality is not strict; the
strict inequality ‖Φk‖ < 1 in the above theorem
will turn out to be a key that assists our rigorous
discussions about an iterative method developed
in the following subsection for the robust perfor-
mance analysis. Even though we do not mean to
degrade Theorem 6.1 of (Sivashankar and Khar-
gonekar, 1993) by these comments since it could
be modified to alleviate the difficulties, here we
take a somewhat different approach that is inde-
pendent of Theorem 6.1 in (Sivashankar and Khar-
gonekar, 1993) to establish this theorem. That is,
we give a proof by means of Propositions 1 and 2, in



which the condition about α′ and β′ plays a crucial
role.

Remark 2. One might claim that the properties (i)
and (ii) of this theorem are direct consequences
from ‖Φ(α, β)‖ = 1 and thus (i) and (ii) always
hold. However, since Φ(α, β) fails to be strictly
increasing with respect to α and/or β, in general
(too see this, consider the case Φ = diag[0.1, 1],
for example), it is not straightforward to see if
the claim suggested above is indeed correct. We
do not go into the details of this issue, since the
“additional” condition (i)/(ii) does not in fact lead
to any difficulty in finding appropriate α and β, as
will be shown shortly.

Proof of Theorem 1. We only consider the case in
which ‖Φ(α′, β)‖ < 1 for all 0 ≤ α′ < α (parallel
arguments can be applied to the case in which
‖Φ(α, β′)‖ < 1 for all 0 ≤ β′ < β). If 0 ≤ k < αβ,
then such k can be represented as k = α′β for some
0 ≤ α′ < α. By the assumption stated just above,
it follows that ‖Φ(α′, β)‖ < 1 − ε for some ε > 0.
Let us introduce ∆0 := diag[Idim(ζ), 0dim(w),dim(z)],
which satisfies ‖∆0‖ = 1. Then, by the small-
gain theorem, the closed-loop system consisting of
Φ(α′, β) and ∆0 is L2-stable, and thus internally
stable by Proposition 1. Recalling that k = α′β,
however, it is straightforward to see that the inter-
nal stability of this closed-loop system is equivalent
to that of Φk. This completes the proof of the first
assertion.

To prove the second assertion, we fix k and thus
ε, as in the above discussions. Let us take ∆wz

1 ∈
∆∆∆((1 − ε)−1; dim(w),dim(z)) and consider ∆1 :=
diag[Idim(ζ),∆wz

1 ], which satisfies ‖∆1‖ < (1 −
ε)−1. Recalling that ‖Φ(α′, β)‖ < 1 − ε by the
assumption, it follows from the small-gain the-
orem that the closed-loop system consisting of
Φ(α′, β) and ∆1 is L2-stable for any ∆wz

1 ∈ ∆∆∆((1−
ε)−1; dim(w),dim(z)). However, it is straightfor-
ward to see that the L2-stability of this closed-loop
system in particular implies that of the closed-loop
system consisting of Φk and ∆wz

1 because k = α′β.
Since we have already established that Φk is inter-
nally stable, we can apply Proposition 2 to arrive
at the conclusion that ‖Φk‖ ≤ 1− ε < 1.

Theorem 1 clearly indicates that for the robust
performance analysis or the computation of kmax,
it is important to find α > 0 and β > 0 satisfying
‖Φ(α, β)‖ = 1 together with the property (i) or
(ii), while Lemma 1 suggests that such α and β can
be found with a bisection method. Note, however,
that ‖Φ(0, 0)‖ = ‖Φ0‖ < 1 by Assumption 1
while, in general, ‖Φ(α)‖ = ‖Φ(α, 1)‖ 6< 1 for
α = 0 and ‖Φ(β)‖ = ‖Φ(1, β)‖ 6< 1 for β = 0,
which is why we introduce both α and β at the
same time. Here we give one such “two-parameter
bisection procedure” for the computation of α and
β satisfying the required condition; even though it is
a straightforward extension of well-known bisection
methods, its details will be described explicitly
below since they will be a matter of concern in
the convergence arguments that we bring forward
about the iterative algorithm we provide for the
computation of kmax defined in Problem 1. In the
bisection procedure, we assume that the initial
values of α and β are positive and coincide with
each other; this assumption will turn out to be quite
important in the convergence arguments.

For simplicity, the procedure given below is de-
scribed only for the case when ‖Φ(α, β)‖ < 1 for
the initial values; if ‖Φ(α, β)‖ ≥ 1, on the other
hand, then Step 0 and Step 1 should be modified in
the following fashion: 2α and 2β are replaced by α/2
and β/2, respectively; the conditions ‖Φ(α, β)‖ < 1
and ‖Φ(α, β)‖ ≥ 1 are mutually interchanged; the
upper bounds ᾱ and β̄ are interchanged with the
lower bounds α and β and vice versa.

Procedure 1. (Bisection procedure for computing
appropriate weights α and β)
(Step 0) Set the initial values and initial lower
bounds α = α = β = β (such that ‖Φ(α, β)‖ < 1).
(Step 1) Redefine α by 2α, and execute either (a)
or (b) below that is appropriate.
(a) If ‖Φ(α, β)‖ ≥ 1, then let ᾱ := α and go to
Step 2.
(b) If ‖Φ(α, β)‖ < 1, then redefine β by 2β. If
‖Φ(α, β)‖ < 1 still holds, then return to Step 1. If
‖Φ(α, β)‖ ≥ 1, then let β̄ := β and go to Step 3.

(Step 2) Let α := (ᾱ + α)/2, and execute either
(a) or (b) below that is appropriate.

(a) If ‖Φ(α, β)‖ < 1, then let α := α.
(b) If ‖Φ(α, β)‖ ≥ 1, then let ᾱ := α.

If ᾱ−α is sufficiently small, then stop after letting
α = α. Return to Step 2, otherwise.
(Step 3) Let β := (β̄ + β)/2, and execute either
(a) or (b) below that is appropriate.

(a) If ‖Φ(α, β)‖ < 1, then let β := β.
(b) If ‖Φ(α, β)‖ ≥ 1, then let β̄ := β.

If β̄ − β is sufficiently small, then stop after letting
β = β. Return to Step 3, otherwise.

Remark 3. Some tolerance is allowed for the errors
between the upper and lower bounds of α and β in
Steps 2 and 3 for numerical reasons, which ensures
that the procedure will terminate unless there exist
no α and β such that ‖Φ(α, β)‖ = 1, or equiva-
lently ‡ kmax = ∞. On the other hand, however,
the tolerance leads to ‖Φ(α, β)‖ < 1 rather than
‖Φ(α, β)‖ = 1 for the resulting weights, strictly
speaking (even though the limiting values of α and
β, if such tolerance is not introduced, indeed satisfy
all the conditions of Theorem 1). Fortunately, we
can see by the inspection of the proof of Theorem 1
that we can still assert for such α and β that
Φk is internally stable and ‖Φk‖ < 1 whenever
0 ≤ k < αβ, at the sacrifice of the bound αβ
becoming a little more conservative. Furthermore,
we can readily see from the construction of this
procedure that

1
2
≤ β

α
≤ 2 (4)

since the initial values of α and β coincide by the
assumption. The above inequality plays a crucial
role in the convergence arguments to follow.

3.3 Iterative Procedure with Convergence for Robust
Performance Analysis
Suppose we apply Procedure 1 and get α and
β, which we denote by α0 and β0, respectively.
Then, it is immediate from Theorem 1 that Φk
is internally stable and ‖Φk‖ < 1 whenever 0 ≤

‡ If ‖Φ(α, β)‖ 6= 1, then it follows from Lemma 1 and
Assumption 1 that ‖Φ(α, β)‖ < 1 for all α ≥ 0 and
β ≥ 0. Hence, by following similar arguments to the proof of
Theorem 1, we are led to kmax = ∞.
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k < kmax(0) := α0β0. Obviously, however, kmax(0) is
not equal to kmax, in general; that is, we only have
kmax(0) ≤ kmax. In this subsection, we aim at exact
computation of kmax via an iterative method.

To this end, let us introduce Π 0 := Π , Φ0 := Φ,
and k0 := kmax(0) for notational convenience. Also,
let us consider the generalized plant Π 1 shown in
Fig. 6 (with i set to 1), and let us denote by Φ1 the
sampled-data system Φ shown in Fig. 4 with the
generalized plant Π replaced by Π 1. The idea here
is that if Φ1 is internally stable and if ‖Φ1

0‖ < 1 †† ,
or equivalently, if Assumption 1 holds with Φ = Φ0

replaced by Φ1, then we can apply Procedure 1 to
Φ1 to get α and β, which we denote by α1 and β1,
respectively. Then, it immediately follows that Φ1

k

is internally stable and satisfies ‖Φ1
k‖ < 1 whenever

0 ≤ k < kmax(1) := α1β1. However, noting that
Φ1

k is nothing but Φkmax(0)+k by the structure of
Π 1, we are led to the consequence that Φk is
internally stable and satisfies ‖Φk‖ < 1 whenever
0 ≤ k < k1 := kmax(0) + kmax(1).

Obviously, the above idea can be repeated for each
i = 0, 1, 2, · · · recursively to get αi, βi, kmax(i) :=
αiβi,

ki :=
i∑

l=0

kmax(l) (5)

Π i+1 and Φi+1 (which is defined as Φ with Π
replaced by Π i+1), provided that Φi is internally
stable and ‖Φi

0‖ < 1.

Here, it is obvious from the definition of kmax that
ki−1 gives exactly kmax if either Φi is internally
unstable or ‖Φi

0‖ ≥ 1. Thus, let us suppose that Φi

is indeed internally stable and satisfies ‖Φi
0‖ < 1

for all i = 0, 1, 2, · · ·, and thus the above iteration
repeats itself infinitely many times. In this case, we
have the following important result on the conver-
gence of the strictly increasing sequence {ki}∞i=0.

Theorem 2. limi→∞ ki = kmax. In particular, if
kmax = ∞, then {ki}∞i=0 diverges to ∞.

Proof. Let us denote k? := limi→∞ ki. It is obvious
from the construction of {ki}∞i=0 that k? ≤ kmax.
Hence it is enough to establish that assuming k? <
∞ and k? < kmax leads to contradiction.

Now, since k? < ∞ and since {ki}∞i=0 is strictly
increasing, we can take a number K > 0 and an

††Recall that Φ1
0 denotes Φ1

∆ with ∆ set to 0, where Φ1
∆

is defined as the system Φ∆ shown in Fig. 3 with the
generalized plant Π replaced by Π 1. Hence, this inequality
implies that the L2-induced norm of the subsystem from w
to z in Φ1 is strictly less than 1.

integer i0 > 0 such that ki ∈ [K, k?] =: K (∀i ≥ i0).
Since k? < kmax by the assumption, it follows that
for all k ∈ K, we have k < kmax, or equivalently,
Φk is internally stable and ‖Φk‖ < 1. Here, let
us denote by Π[k] the modified generalized plant
Π i in Fig. 6 with ki−1I replaced by kI (which is
similar to Πk but still retains the input and output
corresponding to η and ζ), and let us denote by Φ[k]

the corresponding sampled-data system Φ with Π
replaced by Π[k]. Then, we can restate the preceding
consequence as follows: Φ[k] is internally stable and
‖Φ[k](0, 0)‖ < 1 whenever k ∈ K. Hence, it follows
from Lemma 1 that for each k ∈ K, there exists
some a > 0 such that ‖Φ[k](α, β)‖ < 1 (0 ≤ ∀α ≤
a, 0 ≤ ∀β ≤ a). More precisely, we can show
that such a can be taken independently of k ∈ K
by establishing (with a technique similar to (3),
together with the continuity of ‖Φk‖ in k ∈ K) that
‖Φ[k](α, β)‖ is continuous in {(α, β, k) |α ≥ 0, β ≥
0, k ∈ K}.
We are now ready to complete the proof. Let us
recall the inequality (4) to see that (αi, βi) is always
located in the sector shown in Fig. 7, while for
i ≥ i0, it is located outside the square shown in
the figure, so that it is located within the shaded
area. This in particular implies that αi > a/2
and βi > a/2 (∀i ≥ i0). Hence, it follows that
kmax(i) = αiβi > a2/4 (∀i ≥ i0), which clearly
contradicts the assumption that {ki}∞i=0 converges
to k? < ∞. This completes the proof.

0 a

a

β

α

Fig. 7. Possible locations of (αi, βi).

4. NUMERICAL EXAMPLES

In this section, we study numerical examples to
illustrate the proposed iterative method for robust
performance analysis.

Example 1. Let us consider the generalized plant
Π with the structure shown in Fig. 8. We assume
that this Π (or equivalently, Π ′) is constructed in
such a way that when η is set to kζ with k = 0,
the transfer function from u to y coincides with the
nominal transfer function

c

s2 + as + b
(a = 1.5, b = 0.5, c = 2) (6)

u-+ d-
Π ′

p -y
-z
-ζ-η

?+

w

Π

Fig. 8. Generalized plant Π for the example.



while when k 6= 0, it coincides with the actual
transfer function represented by

ck

s2 + as + b
, ck = (1− k)c (7)

(i.e., k corresponds to the uncertainty in the pa-
rameter c). Let the sampling period be h = 0.5 and
the stabilizing controller Ψ for the nominal transfer
function be

Ψ(z) =
ψn0z

2 + ψn1z + ψn2

z2 + ψd1z + ψd2
,

ψn0 = −7.5079, ψn1 = 2.2897, ψn2 = −4.7746× 10−12

ψd1 = 0.74353, ψd2 = −1.5506× 10−12 (8)
with which we have the nominal performance
‖Φ0‖ = 0.309 < 1.

We apply the iterative method given in the preced-
ing section, in which we set the initial values of the
weights α and β in the ith iteration by

αi = βi = (αi−1βi−1)1/2 (9)

to conform to the crucial assumption for the it-
erative method that the initial values of α and
β should coincide with each other ‡‡ , and at the
same time, to accelerate the convergence of (αi, βi).
In this case, the proposed iterative method gives
kmax = 1.0626, which implies that internal stability
and robust performance (i.e., the L2-induced norm
from w to z being less than 1) of the sampled-
data system are retained for ((1 − kmax)c, c] =
(−0.1252, 2]. By slightly modifying Π (i.e., putting
the gain −1 at the input η) and repeating similar
computations, we are led to k′max = 0.2942 and
thus [c, (1 + k′max)c) = [2, 2.5884). Hence, the al-
lowable range for the parameter c is determined
to be (−0.1252, 2.5884). Indeed, we can verify that
the sampled-data system is internally stable and
its L2-induced norm from w to z is indeed equal
to 1 at c = −0.1252 and 2.5884, which proves that
our analysis is exact. It should be noted that while
c decreases from 2 to −0.1252, it takes the value
c = 0, at which the L2-induced norm is obviously 0.
This in particular implies that the L2-induced norm
is not monotonic with respect to the parameter c.

By similar techniques, we can also obtain the ex-
act allowable ranges for the parameters a and b,
which are given by (−11.9487, 20.7727) 3 1.5 and
(0.1029, 0.8432) 3 0.5, respectively.

Example 2. Let us consider the continuous-time
plant (Anderson and Moore, 1990) whose transfer
function is given by

1
4s2

· (s/a + 1)
∏1

i=0

{
(s/ωi)2 + 2ζi(s/ωi) + 1

}
∏4

i=2 {(s/ωi)2 + 2ζi(s/ωi) + 1} (10)

with a = 4.84, ζ0 = 0.02, ζ1 = −0.4, ζ2 = ζ3 =
ζ4 = 0.02, ω0 = 1, ω1 = 5.65, ω2 = 0.765, ω3 =
1.41, ω4 = 1.85, and the discrete-time controller
obtained by applying the Tustin transformation at
h = 8 to the continuous-time controller (Anderson
and Moore, 1990) whose transfer function is given
by

−0.0513s3 + 0.00424s2 + 0.0296s + 0.00157
s4 + 0.693s3 + 0.779s2 + 0.293s + 0.0739

(11)

‡‡ Indeed, our numerical studies show that failing to follow
this rule and setting the initial values of α and β at the ith
iteration simply by αi−1 and βi−1, respectively, lead to the
lack of the convergence of {ki}∞i=0 to kmax, in general.

Suppose that the above nominal plant is embed-
ded in the generalized plant Π with the structure
shown in Fig. 8 exactly in the same manner as in
Example 1 (i.e., as the subsystem from u to y), and
let us analyze the allowable ranges of parameters,
e.g., ζi (i = 0, · · · , 4), by suitably “completing” the
generalized plant Π accordingly. More specifically,
since the nominal performance is ‖Φ0‖ = 111.8, we
aim at analyzing the ranges of these parameters
under which the L2-induced norm from w to z is
less than 120.

Applying the proposed iterative method, we obtain
the allowable ranges given respectively by

Z0 = {−2.2334×10−2 < ζ0 < 2.6788)} (3 0.02)(12)

Z1 = {−0.67646 < ζ1 < 15.522)} (3 −0.4) (13)

Z2 = {1.9490×10−3 < ζ2 < 0.045436)} (3 0.02)(14)

Z3 = {7.7280×10−4 < ζ3 < 0.10699)} (3 0.02)(15)

Z4 = {4.6319×10−4 < ζ4 < 0.13432)} (3 0.02)(16)

Again, we can verify that these ranges are exact in
the same fashion as in Example 1.

5. CONCLUSION

We gave an exact iterative method with guaran-
teed convergence for robust performance analysis of
sampled-data systems. Dealing with multiple uncer-
tain parameters and synthesis problems is an open
future topic.
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