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Abstract: Column flotation processes are difficult to control because they are multivari-
able, difficult to model and complex systems. Model predictive control is a model-based
control strategy that has been applied to a large number of industrial processes, where
a sequence of future control actions is computed by minimizing an objective function.
Accurate nonlinear models using soft computing (e.g. fuzzy and neural) techniques are
increasingly being used in model based control. In this paper, model predictive control
is applied to a column flotation process using a nonlinear fuzzy model. The process has
four manipulating variables: feed flow rate, washing water, air and rejected flow rates.
The outputs of this model, which are normally used to control the grade and the recovery
in the flotation column, are the froth layer height, the bias flow rate and the air holdup in
the collection zone. The most important controlled variable is the froth layer height which

in this work has a very good performance. Copyright (©2005 IFAC.
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1. INTRODUCTION

Industrial applications are always challenging and
have inherent complexity. Column flotation is nowa-
days an important mineral processing unit. It is a com-
plex multivariable process undergoing several distur-
bances, such as those originated by changes in feed
characteristics and in equipment wearing (Finch and
Dobby, 1990). Classic and modern approaches to pro-
cess control rely on the availability of dynamic models
of the process. However, until now it has been difficult
to develop a phenomenological dynamic model of the
column flotation.

Model Predictive Control (MPC) is a model-based
control strategy that has been applied to a large num-
ber of industrial processes. Model predictive con-
trol uses a process model to predict future process

outputs, where a sequence of future control actions
is computed by minimizing an objective function
(Maciejowski, 2001). Accurate nonlinear models us-
ing soft computing (e.g. fuzzy and neural) techniques
are increasingly being used in model based control.
Both the use of these nonlinear models and the pres-
ence of constraints lead to a non-convex optimization
problem, which must be solved at each time instant.
By formulating the decision problem as a discrete
choice problem, the optimization can be efficiently
performed by search algorithms like branch and bound
(B&B). In this case, the control space is discretized
and the problem is reduced to searching the best con-
trol action in the space of control actions (Roubos et
al., 1999; Mendonga et al., 2004). The discretization
of the control space introduces a tradeoff between the



number of discrete alternatives and the computational
complexity.

The nonlinear fuzzy model, used in the predictive con-
trol, is obtained using input-output data from a labora-
tory column flotation in order to try to achieve a model
as accurate as possible. The structure of the model
is determined using a regularity criterion (RC) to
find, “automatically”, the dynamic relations between
input-output variables, as proposed in (Sugeno and
Yasukawa, 1993). The fuzzy model used are Takagi-
Sugeno (TS) fuzzy models. The fuzzy rules are identi-
fied using the Gustafson-Kessel fuzzy clustering algo-
rithm (Gustafson and Kessel, 1979). The inicial model
is optimized using real-coded genetic algorithms. This
combination leaded to the most accurate fuzzy mod-
els (Vieira et al., 2004).

The paper is organized as follows. Fuzzy modelling
is briefly described in Section 2 and model predictive
control is presented in Section 3. A brief description of
the column flotation process is presented in Section 4.
The proposed control scheme is applied to the control
of the column flotation process and some results and
comments are presented in Section 5. Finally, some
conclusions are drawn in Section 6.

2. FUZZY MODELING

Fuzzy modelling using measures of the process vari-
ables, is a tool that allows an approximation of non-
linear systems when there is no prior knowledge about
the system or when it is only partially known. Usually,
fuzzy modelling follows three steps: structure identifi-
cation, parameter estimation and model validation.

One of the important advantages of fuzzy models
is that they combine numerical accuracy with trans-
parency in the form of linguistic rules. Hence, fuzzy
models take an intermediate place between numerical
and symbolic models (Babuska, 1998). In computa-
tional terms, fuzzy models are flexible mathematical
structures that are known to be universal function ap-
proximators. Usually the achieved fuzzy model has
better performance and accuracy than classical linear
models. The system to be identified can be represented
as a MIMO nonlinear auto-regressive (NARX) model:
y = f(x), where x is a state vector obtained from
input—output data. In this case, the state vector x at
each time instant £ can be obtained from the inputs
and outputs of the system, joining them in a vector.

2.1 Structure Identification

In this paper, the significant state variables are chosen
using the regularity criterion, as proposed in (Sugeno
and Yasukawa, 1993) and applied in (Vieira et al.,
2004).

To apply this criterion, the identification data must
be divided into two groups, A and B. The regularity
criterion is used, e.g., for data handling, which is
defined as follows:
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where k4 and kp are the number of data points of
the groups A and B, respectively, y{* and y? are the
output data of the groups A and B, respectively, y2
is the model output for the group A estimated using
the data from group B, and y®4 is the model output
for the group B estimated using the data from group
A.

The number of clusters that best suits the data must
be determined. The following criterion, as proposed
in (Sugeno and Yasukawa, 1993), is used to determine
the number of clusters:
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where NV is the number of data to be clustered, c is the
number of clusters (¢ > 2), xj is the kth data point
(usually vector), x is the mean value for the inputs,
v; the center of the it" cluster, Wi 1s the grade of
the k" data point belonging to i'" cluster and m is
a adjustable weight; usually m € [1.5, 3]. The number
of clusters c is increased from two up to the number
that gives the minimum value for S(c).

2.2 RC algorithm

Assuming that input and output data are collected us-
ing the pilot scale column flotation, structure identi-
fication using this methodology generally entails the
following algorithm:

(1) Cluster the data using fuzzy c-means with 2
initial clusters;

(2) Compute equation (2)

(3) Increase the number of clusters until equation (2)
reach its minimum,;

(4) Divide the data set into two groups A and B;

(5) REPEAT for each state in the state vector that
does not belong to the inputs of the model,

(a) Build two models, one using data group A
and other using data group B:

(b) Compute equation (1);

(c) Put the state with the lowest RC' as a new
input of the model;

(6) UNTIL RC increases or the end of the state
vector is reached.

(7) Select the final inputs;

(8) Using the number of clusters given from equa-
tion (2) and the inputs selected by equation (1),
build a fuzzy model using GK clustering algo-
rithm.



2.3 Optimal Parameter estimation

One of the techniques that is especially suitable for
constrained, nonlinear optimization problems are the
evolutionary computation techniques (Michalewicz
and Fogel, 2002), from which genetic algorithms (GA)
is the most common. GA are inspired by the biologi-
cal process of natural selection, performing selection,
crossover and mutation over a population, in order
to achieve a global optimum. Instead of searching
from general-to-specific hypotheses or from simple-
to-complex, genetic algorithms generate successor hy-
potheses by repeatedly mutating and recombining
parts of the best currently known hypotheses. GA are
applied to an existing population of individuals, the
chromosomes. At each iteration of the genetic process,
an evolution is obtained by replacing elements of the
population by offsprings of the most fitted elements of
that same population. In this way, the best fit individ-
uals have a higher possibility of having their offspring
(that represent variations of itself) included in the next
generation. The genetic algorithm described in this
paper is based on the real-coded genetic algorithm
to optimize fuzzy models, proposed in (Setnes and
Roubos, 2000).

2.4 Genetic algorithm for fuzzy model optimization

Given the data matrix the structure of the fuzzy rule
base derived using the algorithm described in Sec-
tion 2.2, select the number of generations Ny and the
population size L.

(1) Create the initial population based on the derived
fuzzy model structure.
(2) Repeat genetic optimization fort =1, ..., Ng:

(a) Select the chromosomes for operation and
deletion.

(b) Create the next generation: operate on the
chromosomes selected for operation and
substitute the chromosomes selected for
deletion by the resulting offspring.

(c) Evaluate the next generation by computing
the fitness for each individual.

(3) Select the best individual (solution) from the
final generation.

3. PREDICTIVE CONTROL

Predictive control is a general methodology for solv-
ing control problems in the time domain having one
common feature: the controller is based on the predic-
tion of the future system behavior by using a process
model. Model predictive control is based on the use of
an available (nonlinear) model to predict the process
outputs at future discrete times over a prediction hori-
zon. With this method, a sequence of future control
actions is computed using this model by minimizing a
certain objective function.

Usually the receding horizon principle is applied, i.e.,
at each sampling instant the optimization process is
repeated with new measurements, and the first control
actions obtained are applied to the process. Because
of the explicit use of a process model and the op-
timization approach, MPC can handle multivariable
processes with nonlinearities, non-minimum phase be-
havior or long time delays, and can efficiently deal
with constraints (Maciejowski, 2001).

The future plant outputs for a determined prediction
horizon H,, are predicted at each time instant k by
using a model of the process. The predicted output
values y(k +4), ¢ = 1,..., H, depend on the states
of the process at the current time &k and on the future
control signals u(k + j), j = 1,..., H., where H,
is the control horizon. The control signals change
only inside the control horizon, remaining constant
afterwards, i.e., u(k + j) = u(k + H. — 1), for
j=H....,H,— 1

The sequence of future control signals is obtained
by optimizing a cost function which describes the
control goal. Let the error for the several outputs be
represented as

e=rk+i)—Fk+i). 3)

For multivariable systems these goals can be repre-
sented, for instance by the objective function:
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or some small modifications of it, where ¥ are the
predicted process outputs, r is the reference trajectory,
and Au is the change in the control signals. The first
term of (4) accounts for the minimization of the output
errors and the second term represents the minimiza-
tion of the control effort. The term considering the
control effort can be given directly by the control ac-
tions u, which usually minimizes the energy cost. The
matrices Q and R determine the weighting between
the two terms in the global criterion. In general, these
matrices are diagonal in order to simplify the weight
attribution.

The performance of MPC depends largely on the
used process model. The ability of this model to
predict the future process outputs and work in real-
time is very important. When a linear time-invariant
model is used, and in the absence of constraints,
an explicit analytic solution of the problem in (4)
can be obtained. When any constraint is violated,
but the other two conditions remain, no analytical
solution is available. The optimization problem results
then in a quadratic problem to be solved at each
time instant. This nonlinear optimization problem is
convex and can be solved using fast gradient-descent
methods with a guaranteed global solution. However,
in the most general case both nonlinear models and



constraints are present, and the optimization problem
results in a non-convex problem.

Optimization methods for non-convex optimization
problems can be used when the solution space is
discretized, where the problem is transformed into
a discrete optimization problem. This allows the ap-
plication of B&B, which is an efficient tool to deal
with this type of optimization problem (Roubos et
al., 1999; Mendonga et al., 2004).

3.1 Internal model control

Without disturbances, modeling errors and constraints,
the controller yields a time-optimal controller with
zero steady-state error. The effects of modeling errors
and disturbances can be reduced by using the nonlin-
ear internal model control (IMC) scheme (Economou
etal., 1986), given in Fig. 1. The IMC scheme consists

Predictive controller

Objective
‘ Model m Function
Reference | W Optimizer u
Generator

‘m

Feedback
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Fig. 1. Internal model control scheme.

of three blocks: the fuzzy model of the process, the
controller which is based on this fuzzy model, and a
feedback filter. The purpose of the fuzzy model work-
ing in parallel with the process is to subtract the effect
of the control action from the process output. If the
predicted and the measured process outputs are equal,
the error between the process output and the model
output, e = y — y, is zero and the controller works
in an open-loop configuration. If a disturbance acts on
the process output, the feedback signal, e, is equal to
the influence of the disturbance and is not affected by
the effects of the control action. This signal is simply
subtracted from the reference.

3.2 Branch-and-Bound Optimization

The B&B method solves a problem by dividing it
into smaller subproblems, using a tree structure. In
the space solution, only a small number of possible
solutions needs to be enumerated, while the remaining
solutions are eliminated because they do not contain
an optimal solution. The set of solutions not elimi-
nated is subsequently partitioned into increasingly re-
fined parts (branching) over which lower and upper
bounds for the optimal value of the objective function
can be determined (bounding). The B&B operations
are applied recursively. When the control actions are

discretized, the B&B method can be applied to pre-
dictive control (Roubos et al., 1999). The B&B op-
timization technique applied to predictive control has
several advantages over other nonlinear optimization
methods. First, the global minimum is always found,
guaranteeing optimality in the discrete control space.
Secondly, the algorithm is not negatively influenced
by a poor initialization, as in the case of iterative opti-
mization methods. Finally, the B&B method implicitly
deals with constraints. These improve the efficiency of
bounding, by restricting the search space and eliminat-
ing the control actions that are not valid (do not respect
the constraints, for instance).

A general formulation has M; discrete control actions
for each u;. Without loss of generality, in this paper
each input u; of the system is discretized into M dis-
crete control actions, where M is the same for all the
control actions (Mendonga et al., 2004). Therefore,
a discrete control action is represented by u;;, with
i=1,....mandj=1,..., M.

The discrete set {2 containing all the possible control
actions is given by:

Qiﬂl>(QQX"'XQm (5)

where each (; represents the set of all possible dis-
crete control actions for the input u;: Q; = {w;;|j =
1,..., M}. The number of the total possible discrete
control actions S is given by:

S=MxMx---xM (6)

m times

At each time step, S control alternatives can be con-
sidered, yielding a maximum of .S branches.

Now, let 7+ = 1,..., H, denote the ith level of the

tree (¢ = 0 at initial node) and let j denote the

branch corresponding to the control alternative w;.

The cumulative cost at node i, J(*) is given by

T =3 (lle(k+ 03 + | Auk + € = DII&) (7)
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In this B&B formulation, no branching takes place
beyond the control horizon (¢ > H. — 1). Therefore,
the control action u(k+ H.—1) is applied successively
until H,, is reached. If only the branching rule would
be applied, this would result in an enumerative search,
and S possibilities would be tested. Even for a small
number of inputs m, small number of discretizations
M, and small control horizons, this number can be
too large, inducing an enormous computational effort.
Thus, the bounding task is fundamental to reduce the
number of alternatives. A particular branch j at level
i is followed only if the cumulative cost J(*) plus a
lower bound on the cost from the level ¢ to the terminal
level H,,, denoted Jé” is lower than an upper bound
of the total cost, denoted Jy;. In this paper, we assume
that the lower bound is given by the cost associated



with the transition §(k + i) = f(x(k + i — 1),w;),
which is computed using the cost function (7), and is
represented as J ]@ (wj ). The remaining cost from ¢+ 1
up to H,, is very hard to calculate, and we assume
that it is zero. Therefore, the branch condition is the
following:

T 4+ I (w)) < Ju ®)

4. APPLICATION TO THE COLUMN
FLOTATION PROCESS

4.1 Process

Froth flotation or, shortly, flotation (as froth flotation
is the most important of the flotation processes) was
introduced in the beginning of the 20*" century, and
is one of the most versatile separation processes used
in mineral processing. Until then, it was not possible
to separate several minerals, like most of sulfides, be-
cause they exhibit similar density, magnetic suscepti-
bility and conductivity.

The flotation process separates fine solid particles
based on physical and chemical properties of their sur-
faces. Industrially, it is a continuous solid-solid sepa-
ration process performed in a vessel where a three-
phase system is present: solid particles, air bubbles
and water. This pulp is previously conditioned with
the controlled addition of small quantities of specific
chemical reagents to promote the selective formation
of aggregates between solid particles of a given com-
position and air bubbles. Air is continuously injected
in the pulp, giving rise to the formation of air bubbles.

Hydrophobic particles adhere, after collision, to the air
bubbles, which move upwards to the top of the vessel
where they are recovered as the floated product. Hy-
drophilic particles settle in the pulp, become the non-
floated product or underflow. Besides mineral process-
ing, it is used in some other fields, such as solvent
extraction and recycling. A flow of air is continuously
injected in the medium to transport the particles. After
collision with air bubbles, which move upwards to
the top of the column, hydrophobic particles adhere
to them and will be recovered as the floated product.
Hydrophilic particles stay in the vessel, becoming the
underflow product, recovered at the bottom of the col-
umn.

There is also a shower of water in the top of the
froth column, used to ”wash” from the floated prod-
uct hydrophilic particles that were dragged with the
aggregates bubbles-hydrophobic particles.

The work presented in this paper was performed using
experimental data of a pilot scale laboratory flota-
tion column of 3.2m high by 80mm of diameter. The
flotation column is equipped with variable speed peri-
staltic pumps (manipulation of underflow and feed
flow rates) and control valves (manipulation of air and
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Fig. 2. Column flotation scheme, where M are flow
meters and P are pressure sensors.

Table 1. Variance acounted for (VAF) of the
obtained fuzzy models.

H Qbias €c
RC criterion (used as model) 76.6 92.8 88.0
RC + GA (used as real process) | 98.6 94.9 90.9

wash water flow rates). The underflow and feed flow
rates are measured by electromagnetic flowmeters, the
wash water flow rate by a turbine meter and the air
flow rate by an orifice plate, see Fig. 2. The collec-
tion zone height is inferred by means of a soft sensor
(Carvalho, 1998) that uses the measurements of two
pressure sensors. These measurements are also used to
estimate the air holdup in the collection zone. The bias
water flow rate is calculated as the difference between
feed and overflow flow rates.

At this stage, the system is operated with air and water.

5. RESULTS AND COMMENTS

The application of the described predictive control
scheme to the column flotation process aims the stabi-
lization of the internal variables of the process under
study.

The column flotation process is too complex, and up
to now, no physical model is readily available. For
this reason, the simulations were performed using
two different fuzzy models, one more accurate (used
as the process) than the other (used as the model).
The models accuracy and performance were presented
in (Vieira et al., 2004). Table 1 presents the accuracy
of the fuzzy models, measured with the variance ac-
counted for (VAF). Tables 2 and 3 show the physi-
cal range of the process variables, used in the design



Table 2. Range of the controled variables.

Min.  Max.
H 0 68
Qbias —10 10
€c 0 10

Table 3. Range of the manipulated vari-
ables.

Min.  Max.
Qair 150 330
Qrej 60 160
Qfeed 70 160
Quw 30 54
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Fig. 3. Model Predictive Control results.

of the predictive controller. From all the controlled
variables, the level (H) is the most important in the
stabilization process. For this reason, the control of
this variable is considered more important than the rest
of controlled variables. Both the level (H) and the air
holdup (e.) are strongly influenced by one of the ma-
nipulated variables, the air flowrate. The results shown
in Fig. 3 were obtained using six discretizations, a
control horizon (/) of one and a prediction horizon
(Hp)of eight.Given the importance of the level con-
trol, it is considered that the air holdup may oscillate
from is reference between 10 to 25% of his range, as
stated in (Carvalho, 1998). The bias flowrate (Qp;iqs)
is influenced mainly by the feed flowrate (Q fceq) and
the rejected flowrate (Qrc;).

When a nonlinear model of the process is used, the re-
sulting optimization problem in model predictive con-
trol is often non-convex. B&B can be used to search
a discretized control space for the optimal solution,
requiring a small number of discrete control alterna-
tives. But in this case the number of discretizations
of the control actions has a strong influence on the
results and it is not possible to control the process
with less than four discretizations. This may increase
exponentially the computation time.

6. CONCLUSIONS

Model predictive control was applied successfully to
column flotation process, which is a very complex,

nonlinear and multivariable system. The inherent in-
stability of the system, makes it difficult to control.
The results show that the main controlled variable has
a good performance and the two other also show a
good performance, however there is some work to
do, expecting to reduce the settling time especially
of the air holdup. The fuzzy model presented in this
paper, which presents very good performance, is very
important, once it minimizes the prediction error. The
predictive controller will be implemented in the pilot
plant in the near future.
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