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Abstract: Due to their characteristics, freeways appear to be ideal sites for testing
new traffic regulation strategies, based on continuously improved information
systems. In this framework, a particular consideration has recently been devoted
to the application of neural networks (NNs) to freeway supervision and control.
In this paper, the solution to a “classical” traffic control problem is tackled with.
The traffic state variables given as inputs to such a problem can be computed
via a macroscopic traffic model, thus requiring costly and complicated varying
parameter identification, or via a significantly simpler NN filtering approach. While
the second approach does not require to identify the parameters every time they
change, it will be shown that the performances of such two computation procedures
are comparable. Copyright IFAC 2005
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1. INTRODUCTION

Maximising the efficiency of freeway networks
would attract and satisfy its users, then contribute
significantly to the traffic equalisation among the
different available modes, and to a consequent bet-
ter utilisation of the available infrastructures (see,
for instance, Diakaki et al. (2003)). Moreover, ow-
ing to the restricted access via the input/output
gates, freeways appear to be ideal sites for testing
new traffic regulation strategies, based on contin-
uously improved information systems (Papageor-
giou and Kotsialos (2000)).

Traffic control problems usually require to deter-
mine both the present and the future traffic be-
haviour. In this framework, while the recent tech-
nology provides sensors which accurately measure
the traffic variables, the future traffic behaviour
can be computed or estimated by means of three
main approaches:

(1) a suitable traffic model;
(2) an Extended Kalman Filter (EKF);

(3) a Neural Network Filter (NNF).

Among these approaches, NNF plays an inter-
esting role, since it does not need to know the
equations which describe the traffic dynamics. In
fact, such equations contain many parameters,
which have to be tuned for each considered free-
way section. Then, while these tunings need the
knowledge of a large amount of real traffic data,
whenever they change, for instance due to the
weather conditions, or accidents which can block
some lanes, they have to be tuned again. In ad-
dition, such a tuning process results to be quite
difficult due to the non-linear dynamics of the
traffic behaviour (see Cremer and Papageorgiou
(1981) for more details).

On the other hand, although the learning algo-
rithms of NNFs also requires the knowledge of real
traffic data, the NN-based prediction approach
can react to the changes in the system behaviour
better than the traffic models do, in the sense that
NN filter can provide good traffic state predic-
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Fig. 1. The generic i-th freeway section.

tions also when the above mentioned parameters
change, without any further learning procedure.

In this paper, to the end of pointing out the
performances of a proposed NNF, the solution to a
“classical” traffic control problem is tackled with.
The traffic state variables given as inputs to such
a problem will be computed via a macroscopic
traffic model, thus requiring costly and difficult
parameter identification, or via a significantly
simpler NN filtering approach. It will be shown
that the performances of such two computation
procedures are comparable.

2. THE FREEWAY TRAFFIC MODEL

Freeway traffic systems can be suitably repre-
sented by means of a macroscopic non-linear
second-order model based on the continuous vari-
ables traditionally describing fluid mechanics. To
this end, the freeway is divided into N sections of
length ∆i, and all the aggregate variables in the
generic section i, i = 1, . . . , N , that is:

• the traffic volume qi
k [veh/h],

• the traffic density ρi
k [veh/km],

• the mean vehicle speed vi
k [km/h],

are sampled in kT, k ∈ N, being T the sampling
period. Thus, the state equations describing the
traffic density and the mean vehicle speed on each
freeway section result to be:

ρi
k+1 = ρi

k +
T

∆i
[qi−1

k − qi
k + ri

k − si
k] (1)

and

vi
k+1 = vi
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τ
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∆i
vi

k

[
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k − vi
k

]

+

−
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(
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k

)

τ∆i
(

ρi
k + χ

)

(2)

where the variables ri
k and si

k give the vehicle vol-
umes entering and leaving section i, i = 2, . . . , N−
1, at time k ∈ N ∪ {0}, if there are on-ramps
or off-ramps. In addition, α, τ , ζ, ν, and χ are
parameters depending on the freeway layout, and
V [ρi

k] is the fundamental traffic diagram
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Fig. 2. Density-speed fundamental traffic diagram.

V (ρi
k) = Vf

[

1 −

(

ρi
k

ρmax

)l
]m

(3)

which is depicted in Fig. 2. The parameters Vf , l,
m, and ρmax in (3) also depends on the freeway
topology.

It is worth underlining that such parameters also
depend on external (often uncontrollable) condi-
tions such as weather conditions or accidents. As
an example, when an event blocks or reduces, for
instance, the number of the lanes of the freeway,
then the maximum admissible traffic density ρmax

decreases.

Moreover, the traffic flow exiting the generic sec-
tion i, i = 1, 2, . . . , N − 1, at each time k ∈ N

results to be a dependent variable given by

qi
k = αρi

kvi
k + (1 − α)ρi+1

k vi+1

k , (4)

whereas the off-ramps volumes si
k are related to

the traffic volumes qi−1

k through the relationship

si
k = γkqi−1

k , 0 < γk < 1. (5)

By substituting relations (5) and (4) into (1), it
turns out that

ρi
k+1 = ρi

k +
T

∆i
[α(1 − γk)ρi−1

k vi−1

k +

+(1 − 2α + αγk − γk)ρi
kvi

k+

−(1 − α)ρi+1

k vi+1

k + ri
k],

(6)

Finally, the equations of the dynamics of the first
and the last sections are

ρi
k+1 = ρi

k

vi
k+1 = V [ρi

k]
i = {1, N}. (7)

Thus, the model takes on the standard form

xk+1 = f(xk,uk)
yk = g(xk)

(8)

where:

• xk , col
[

ρ1
k, . . . , ρN

k , v1
k, . . . , vN

k

]

is the state
vector;
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Fig. 3. A neural network.

• uk , col
[

r1
k, . . . , rN−1

k , s1
k, . . . , sN−1

k

]

is the
input vector;

• yk , col
[

q1
k, . . . , qN−1

k

]

is the output vector.

In this representation, it is clear that ri
k, i =

2, . . . , N −1, are the variables which allow to con-
trol and optimise the traffic behaviour, expressed
by the state xk. Obviously, the more accurate is
the prediction of the traffic variables, the more
effective are the workable control and optimisation
strategies.

3. NEURAL NET FILTERING APPROACH

3.1 Basics of Neural Networks

A neural network (NN) (see, for instance, Haykin
(1999) for details) consists of a great number
of local independent elaboration elements, i.e.,
neurons, which have several inputs and a single
output. Each neuron has its own transfer function,
which rules the local elaboration giving an output
based on the present inputs and on a set of weights
applied to each input. These weights are different
for each neuron and their choice is a major prob-
lem in designing a NN. It is worth noting that
each neuron works independently and, usually,
asynchronously from each other, guaranteeing a
great parallelism in the net.

Formally, each neuron i is characterised by a
threshold θi, by an internal state Si

k at each
discrete time k, k ∈ N, and by the weights wi,j

of the connections with the other neurons of the
net. Then, the dynamics of a NN is given by
the activation law, which updates the state of
each neuron, and by a learning algorithm, which
updates the weights of the links.

In formulas, the next state is

Si
k+1 = F [P i

k] =
1

1 + e−P i
k

(9)

where F [P i
k] is the above mentioned transfer func-

tion and

P i
k =

N
∑

j=1

[wij · S
j
k − θi] (10)

is the internal potential, for all k ∈ N.

Several NN architectures are possible:

(1) single layer architecture: the NN consists
in a single layer of neurons, which directly
evaluate the outputs based on their inputs;

(2) multiple layer architecture: there is an input
layer, which stores the inputs, and an output
layer, which evaluates the output. In addi-
tion, there are several hidden layers between
the input and output ones. Based on the kind
of connections among the neurons, multiple
layer NNs can be divided in:
(a) feedforward networks, as the one de-

picted in Fig. 3, where the connections
are only directed from the input layer
towards the output layer through the
hidden layers. The NNF described in this
paper is based on a feedforward architec-
ture;

(b) feedback networks, where there are some
connections from the output layer to-
wards the input layer.

Finally, the learning algorithm updates the weights
of the links on the basis of the error between
the NN output and the measured output of the
real system. In particular, in this work, the Error
Back Propagation algorithm (see Rumelhart et al.
(1986) for a more detailed description) is imple-
mented. Such an algorithm updates the weights of
the connections between the layers, starting from
the output layer and back towards the input layer,
through the hidden layers.

3.2 Neural network adaptive filter

In this section, some details about the NN predic-
tor proposed in this paper will be given. To this
aim, consider the NNF reported in Fig. 4. In such
a figure it is possible to note that three NNs are
implemented:

• the state predictor NN, which gives the pre-
diction x̂NN

k+1|k of the state whereas it receives,
as inputs, the vector

Uk = col[uk,uk−1, . . . ,uk−nu
],

which gathers the latest nu + 1 input values,
the output vector

Yk = col[yk,yk−1, . . . ,yk−ny
],

which gathers the latest ny +1 output values,
and, finally, the latest state value x̂NN

k|k ;
• the output predictor NN, which gives the

prediction ŷNN
k+1|k of the output, whereas it

receives, as inputs, the vector Uk, the output
vector Yk and, finally, the state value x̂NN

k+1|k

predicted by the state predictor NN;
• the state filter NN gives, at k+1, the updated

prediction of the state x̂NN
k+1|k+1

receiving as

inputs the state x̂NN
k+1|k predicted by the state
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Fig. 4. Neural network filter.

predictor, the vector Yk, the actual output
yk+1, and the innovation term

ǫk+1 = yk+1 − ŷNN
k+1|k. (11)

When the measurements of the output variables
are not available for some reason, the innovation
term ǫk in (11) can not be computed. As a conse-
quence, the NN state filter at the bottom of the
Fig. 4 can not work and then, the resulting filter,
which simply consists of the state and output pre-
dictor, works as an “open loop” predictor without
information about the estimation error. It is rea-
sonable to expect that the performances of such a
predictor will be worse than the performances of
the complete filter.

To the end of understanding the differences be-
tween the two implementations, consider the
graphs in Fig. 5 and Fig. 6, where the traffic
speed and the traffic provided by the model are
compared with those given by the NNF with and
without the measures of the output variables. As
expected, the performances of the predictor are
worse than the performances of the complete fil-
ter.

On the other hand, if the prediction horizon
is quite short, it is reasonable to expect that
the performances of the two implementations are
comparable, as pointed out in Fig. 5 and Fig. 6.
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4. THE CONTROL PROBLEM

In this section, the problem of clearing possible
freeway congestions is stated as a Finite-Horizon
(FH) problem.

With the aim of simplifying the notation, let us
introduce the set S of the N freeway sections, the
set I of the freeway sections which have on-ramps
and off-ramps and the set of the time instants
K = {0, 1, . . . , K − 1}.

Then, consider the problem of minimising the
total time spent by vehicles in the freeway system.
In this framework, the control variables result
to be the on-ramp vehicle volumes, whereas the
control strategy consists of limiting the number
of vehicles entering the freeway, with the aim of
reducing the congestion.

In doing so, a suitable cost function is given by
the sum of the total travel time and the waiting
time on the on-ramps, and takes on the form

J =
K

∑

k=1

Tρ
k
∆ +

K
∑

k=1

T lTk e (12)

being ∆ , col[∆i, i = 1, . . . , N ], and e , col[ei =
1, ∀ i ∈ I].



Moreover, lk is the vector which gathers the
queues on the on-ramps, which are given by the
equation

lik+1 = lik + T (di
k − ri

k), ∀ k ∈ K, i ∈ I (13)

where di
k is the demand for access to the ramp in

section i at time kT . Analogously, the equation

hi
k+1 = hi

k + T (qi−1

k − qi
k), ∀ k ∈ K (14)

where hk is the queue length, whereas qi−1

k and qi
k

are the traffic flows entering and exiting section i,
respectively, gives the queue length in each section
i, i = 2, . . . , N .

The problem (12) is subject to constraints (2), (6),
(13), and

0 ≤ ρi
k ≤ ρmax

k , ∀i ∈ S, ∀k ∈ K
0 ≤ vi

k ≤ vmax
k , ∀i ∈ S, ∀k ∈ K

0 ≤ lik ≤ lmax
k , ∀i ∈ I, ∀k ∈ K

ri,min

k ≤ ri
k ≤ ri,max

k , ∀i ∈ I, ∀k ∈ K

(15)

where

ri,min

k = max
{

ri,min, di
k −

1

T
(li,max − lik)

}

ri,max

k = min
{

ri,max, di
k +

1

T
lik

}

(16)

being ri,min and ri,max fixed parameters depen-
dent on the road characteristics.

As regards the solution to problem (12), a classical
steepest descent method is considered. In doing
so, the constraints (15) of the problem have been
removed, then considering the approximated cost
function

J̃ = J +
∑

i∈S

K
∑

k=1

{

Kρ{[max(0,−ρi
k)]2+

+[max(0, ρi
k − ρmax

k )]2}+

+Kv[max(0, vi
k − vmax

k )]2
}

+

+
∑

i∈I

K
∑

k=1

{

Kl{[max(0,−lik)]2+

+[max(0, lik − lmax
k )]2}+

+Kr{[max(0, ri,min

k − ri
k)]2+

+[max(0, ri
k − ri,max

k )]2}
}

(17)

where the new terms represent a Lagrangian re-
laxation of the constraints (15), and Kρ, Kv, Kl,
and Kr are large constant positive scalars. It is
worth noting that such penalty terms are differ-
entiable with respect to their arguments, allowing
the use of the gradient method to find the optimal
solution.

Finally, it is worth remarking that the computa-
tion of the cost function (17) requires the knowl-
edge of the future values of the traffic variables,
which can be obtained by means of a traffic model,
as in Di Febbraro et al. (2001), or by means of the
proposed NNF.
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Fig. 7. Traffic speed in section 3.

Both these computation methods have advantages
and disadvantages. While from a performance
point of view both the procedures give satisfactory
results, as shown in the next section, the NN
approach results to be worse from a computa-
tional point of view. In addition, while the use
of the second order model described in Sec. 2
requires the tuning of several time-varying para-
meters (see Cremer and Papageorgiou (1981) for
more details), which needs a large amount of real
traffic data, the use of the NN adaptive predictors
requires a learning procedure of the NNF, which
also requires a large amount of data.

5. SIMULATION RESULTS

In this section, a comparison between the perfor-
mances of the problem (17) solved by computing
the traffic dynamics by means of the model, with
respect to the traffic dynamics predicted by a NN
approach, is reported.

The test site here considered consists in 5 sections
of a three-lane freeway near to a congestion. In
such a situation an increase in the traffic density
and, as a consequence, a decrease of the traffic
speed, as reported in Fig. 7, will cause a queue if
in at least a section the traffic volume exceeds the
freeway capacity.

In such situations, the classic control strategy
implemented in this paper simply consists in lim-
iting the number of vehicles entering the freeway
through the on-ramps, as said above. Note that,
although such a regulation strategy results in the
rise of vehicle queues on the on-ramps, if the
control variables are suitably chosen, the total
amount of time spent by vehicles on the freeway
can be reduced.

In the graphs of Fig. 5, Fig. 8, Fig. 9, and
Fig. 10, the traffic speed and the vehicle queues
relevant to a congested situation optimised by
means of problem (17) are reported. In such
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Fig. 9. Queue in section 3.

figures, it is possible to compare the performances
of the control problem when the traffic dynamics
is determined by the second order model, to
its performances when using the NN predictor.
In particular, it is easy to note that the two
approaches almost give the same results. In effect,
due to the particular structure of the problem, if
the time horizon on which the problem is solved
is short enough, the performances of the predictor
are similar to those of the complete filter, as said
in the above Sec. 3.2.

At the end, it is worth noting that the NN learning
algorithm is based on traffic data measured in a
situation without congestions, and made up via
an off-line procedure. That results in the main
advantages of the NN approach, i.e., in the fact
that the performances of the predictions do not
deteriorate significantly when the state conditions
change.

6. CONCLUSIONS

The main contribution of this work stands in
the comparison of the performances of a selected
control problem, in the two frameworks in which
the necessary input traffic data are computed by
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a classical second order macroscopic traffic model,
or by a NN adaptive predictor.

A major advantage of the proposed predictor re-
lies in the fact that there is no need to know
the model of the traffic dynamics, which is char-
acterised by several varying parameters that re-
quires a quite difficult tuning. On the other hand,
from a computational point of view, the proposed
approach results heavier than the approach based
on the analytical traffic model.

Such a comparison has proved through the exper-
imental results reported in Sec. 5 that the NN
approach is still effective in those situations when
traffic control is necessary, i.e., in case of traffic
congestions, without any new learning procedure.
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