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1.  INTRODUCTION

The assumption of equidistant sampling and constant
control delay is a simplification typically made prior to
the design of a discrete controller, applying traditional
synthesis methods. Depending on the underlying
computer system this might not be an appropriate
approximation, or alternatively, it might mislead the
designer to over-constrain the real-time behaviour of
the computer control system. Hence, it is valuable to
assess the effects of time-varying sampling and
control delay. The design of a computer control
system involves deciding upon the architecture:
partitioning, allocation, real-time scheduling, etc. The
result of these activities will affect the timing
behaviour of the controller in terms of sampling
period and control delay. Many computer control
systems, for example embedded in vehicles and
manufacturing equipment, are distributed having
communication channels. The channels convey
signals through layers of device drivers,
communication protocols and application software,
resulting in inherently time-varying end-to-end
latencies. Jitter is here defined as unintentional or
intentional time-variations compared to some nominal
specification of a time interval. The jitter is usually an

unintentional by-product and can from a control
viewpoint be seen as a disturbance, compared to the
nominal model used for analysis and synthesis.

In this paper a weighted quadratic measure applicable
for analysing the timing behaviour, including jitter, is
proposed. It can also be used for robustness analysis.
The main contribution of this paper is the zero-order-
hold discretization of the process and weight matrix
allowing for non-periodic multiple changes in the
control signal during one (time-varying) sampling
period. 

Fig. 1  The closed loop with sample and hold blocks, 
and with a delay directly after the controller. 
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In order to compute the loss function, there is a need to
model the timing behaviour of the discrete-time
controller, to discretize the process model and also the
loss function. The process and controller together give
the covariance of the closed loop. Finally, this will be
combined with the discrete weight matrix to yield the
sought measure of deterioration. A few alternative
formulations and techniques will be pointed out, such
as lifting and linear matrix inequalities. An example is
given to show the application of the derived measure.
As an application to the theory, the interesting
question what type of jitter causes the worst-case
performance, is studied by means of a numerical
example. The paper is concluded by a note of related
work and some final remarks. A summary of the
notation is found in the end of the paper. More details
and examples are found in (Sanfridson, 2004).

2.  SYSTEM MODEL

In this section the timing behaviour and the dynamics
of the studied system will be described. The following
analysis is not limited to any specific system
architecture or scheduling policy. The text book’s
uniform sampling and constant delay falls out as a
special case.

2.1  Timing model, assumptions

Fig. 1 depicts a closed loop with the delay situated
after the controller and before the hold-circuit. Let the
signals , ,  and  arise at the same
time instant , corresponding to an integer-
valued instance . The time  is
strictly increasing, , . An assumption
made here is that an old control signal  cannot
arrive at the process later than an already arrived
newer one,  with positive integers . It
makes sense that old unused samples are overwritten,
so called sample rejection. 

2.2  Timing model, example

Timelines are convenient to describe real-time
behaviour. In Fig. 2, there is a pair of timelines: one for
the sampling  and one for the actuation . 

Fig. 2  Non-uniform sampling and actuation events.

A sampling period is the time interval between two
consecutive sampling instances. The continuous
measurement signal is in the general case not sampled
uniformly, but displays jitter at the input to the
controller. The time-varying sampling instances give
rise to sampling period jitter, when compared to
equidistant sampling. Similarly, the output instances

 exhibit, in the general case, jitter at the output to
the process, i.e. at the actuator. The control (or
processing) delay is the time interval between a
sampling and its corresponding output. The output
jitter can be interpreted as a combination of sampling
jitter and delay jitter. 

During the period  depicted in Fig. 2 the
control signal  changes three times in a burst,
preceded by a corresponding calm period with an
ageing  spanning over multiple sampling
instances. 

The example of a general but bursty timeline in Fig. 2
could arise due to low priority scheduled calls to an
A/D unit, followed by the use of buffers for message
delivery, and given an event triggered synchronization
policy for the controller and actuator downstream.
Despite varying latency by interference from higher
priority tasks and messages, it is simple to enforce the
same sequence of sending and delivery (FIFO-order)
by using a counter, thus implementing sample
rejection. 

2.3  Continuous time process model

The process is LTI and strictly proper. When affected
by a time-varying delayed control signal the state
equation can be written

(1)

with state vector . The continuous time state noise
 has a zero mean value and incremental covariance

. Further, the increments are uncorrelated. The
output equation can be written  and the
measurement equation  is at the
sampling instant  corrupted by discrete time white
noise  of zero mean and covariance . The
constant matrices  have the sizes

, ,  and 
respectively.

2.4  A given discrete time controller

The linear discrete time controller is given by

(2)
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where  is the state of size  and
 are constant matrices of the

sizes , , , ,
 and  respectively (  is

explained in the next section). The discrete delayed
control output vector 

(3)

has the size  and is updated by

(4)

when time progresses from  to . The time
interval  between any two rows is in the
general case not constant. 

2.5  Loss function

Since the vector field is described by a retarded
differential equation (1), it makes sense to define a loss
function similar to the familiar one commonly used in
optimal control,

(5)

over some time period  (the same token is also used
to denote matrix transpose), with  (positive
semi-definite),  and in total . A discrete
time equivalent during one sampling period is, with

, expressed by

(6)

where  captures the intersample noise due to .

3.  DISCRETIZATION OF THE PROCESS

Fig. 3  Arrival of control signals.

The case without delay or with a constant delay is
covered in text books, e.g. (Åström and Wittenmark,
1997). With fractional delays, the fact that the control
signal is piecewise constant is used. The same concept
is used here, and with multiple changes of the control
signal, there will be several input matrices. The
solution to (1) with a zero initial value, 

(7)

admits an exact zero-order-hold discretization without
approximations. The equivalent process in discrete
time is

(8)

with constant matrices  of
appropriate sizes: , ,

, and  respectively. 

Let  be a sorted set of offsets or fractional delays
. The offset  is the time interval from  until

 switches in, with a second subindex
. The elements of  form a

monotonically increasing sequence,

. (9)

The switching of the piecewise constant control signal
during an interval of the length  is
illustrated in Fig. 3.

The relation of the triple  is
 for some  and

, . The purpose of  is to force
matrices to have conform sizes and not depend on .
The relation is sketched geometrically in Fig. 4, with

. Note that any instance ,
which corresponds to the newest data used to calculate
the output during the studied interval, is uniquely
defined, and that  and  do not necessarily coincide.

Fig. 4  Relation of the triple .
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Equation (8) can also be written

(10)

which shows the construction of the tuple 
and . The system and input matrices at instance

 are found by 

(11a)

(11b)

for some . The covariance of the state noise becomes 

(12)

since the last term of (7) does not correlate with  or
. The state noise does not depend on the delay. 

4.  CLOSING THE LOOP

By inserting the controller (2) into (8), the closed loop
becomes , with 

(13a)

, (13b)

and with the state vector

, (13c)

and the noise vector

. (13d)

5.  THE DISCRETE WEIGHT MATRIX

The weight matrix is found by identification
comparing (5) and (6). After some handwork, the
following integrals can be found:

(14a)

(14b)

(14c)

(14d)

(14e)

. (14f)

The submatrices  depend on the current instance 
and the fractional delay instance . Assembled, the
weight matrix becomes

, (15)

where additional rows and columns are inserted to
cater for the difference within the triple

. The numerical computations of the
integrals can be performed by calculating matrix
exponentials (Van Loan, 1978), see the appendix.

5.1  Two alternative definitions

Another construction of a loss function in this case, is
of course the one traditionally used in optimal control,

. (16)
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The difference between (5) and (16) depends on where
the “probe” to read the control signal is placed; the
delay is instead placed after the hold block in Fig. 1.
The formulation of the closed loop will stay the same.
By identification of (16) with (6), it is found that ,

 and  yield the weight matrix

. (17)

The difference between (5) and (16) depends on ,
(Sanfridson, 2004). 

A third alternative — a straight forward assembly
which can be seen as a discrete time version from the
start — is to discretize  in (16) into  without
delays (Åström and Wittenmark, 1997), and expand it
into

(18)

i.e. not punishing old control signals. This renders a
lower value than the main alternative (17).

5.2  State noise

By the above mentioned identification the additional
intersample loss becomes

. (19)

5.3  Inserting the control signal

The loop is closed by inserting the control law,
substituting , getting a new state vector. The
transformation  based on 

, (20)

does the trick.

5.4  Measurement noise

When the loop is closed, the variance of measurement
noise arising at time  should be added which yields
the term 

. (21)

 is the weight belonging to , i.e. , 
or . 

6.  PUTTING IT ALL TOGETHER

The closed loop derived in the previous sections,
changes from one sampling instance to another. The
timing of the computer system, i.e. the execution and
communication, is modelled by a finite discrete
Markov chain. The Markov chain models the pattern
of time variations and the state covariance is governed
by this switching of linear discrete state update models
(Costa and Fragoso, 1993; Ji et al., 1991). Each
Markov state contains information related to one
sampling period. The probability of a jump from  to

 is

 (22)

with states . The constant square
Markov state transition probability matrix

(23)

of the homogenous chain (does not depend on ), will
have a certain structure of zero jump probabilities; the
delay cannot increase faster than time itself, i.e.

, but the delay can disappear instantaneously.
A recursive equation giving the steady state
probability vector is 

, (24)

which converges to  when  provided the
chain is positive recurrent and aperiodic (Cassandras
and Lafortune, 1999). 

Fig. 5  Example of a periodic sequence. 
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Fig. 6  Example of a periodic Markov chain.

An aperiodic chain can be used to model the general
case of random time-variations, and a periodic chain
can be used to model e.g. a static schedule. For a
periodic chain (24) will not converge and the result
depends on the initial value. However, the probability
of finding the chain in a specific state is related to the
expected recurrence time of that state. The periodic
system in Fig. 5 has a periodicity  of two. The
instants  are equidistantly spaced.
Type 1 corresponds to the interval  and
type 2 to . A sequence of periods can be
e.g. . Note that the sequence of outputs
in the figure does not exhibit jitter.

A chain can be periodic even if some state transitions
are random. Let the second instance of type 2 be
modified and call this type 3:  arrives at the process
a time interval  earlier. A sequence becomes for
example . The system is still 2-
periodic, since state 1 is always visited every second
jump, see Fig. 6. The transition probability matrix
becomes

(25)

and the main diagonal is naturally filled with zeros. 

The state and measurement noise affects the state
covariance, preferably formulated using Kronecker
and vector notation. In addition to this, the analysis
can be cast as a numerical convex optimization based
on linear matrix inequalities, LMIs. The special case
of a periodic system also fits in the analysis.

6.1  Steady state covariance

A state-dependent (conditional) covariance at time 
can be defined by  where

 denote the state of the chain. The
steady state covariance  is found as the limes when

, provided it exists. From (6) the loss can be
written as the sum over  number of non-uniform
periods,

(26)

where ,  and  denote the weight and the
expected contribution from the noise, at the state . At
the third equality, the domain changes from the time-
line with arguments of  to the Markov chain with
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This can be solved by ordinary matrix manipulations,
and the steady state conditional covariance  is
then retrieved by unfolding the column vector .
See (Sanfridson 2004) for the definition of the update
matrices in (28) and (Nilsson 1998) for a stringent
derivation.

6.2  Periodic system

For a periodic Markov chain, with deterministic jumps
only, the loss can be written more generally:
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procedure, the -periodic system can be written as a

-periodic (or aperiodic from a sampled time
viewpoint) equivalence (Bittanti et al., 1991). This can
be applied when the ratio of e.g. the sampling period
and control period is a rational number, in order to
obtain a finite dimensional discrete time
representation.

For a fully deterministic periodic system with ,
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overhead. But all transitions in a periodic chain do not
necessarily have to be deterministic, cf. the example in
Fig. 5. In fact, the framework developed for random
jump linear systems is applicable also when the
Markov chain is periodic. The transition probability
matrix is degenerated, c.f. (25), but the Markov
property still holds. The periodicity  of the state
probability vector can be described by

 for some  in steady state, and the
state independent covariance will converge on the
same premises as that of an aperiodic Markov chain.

6.3  Stability and robustness

The jump linear system is stable in the mean square
sense and (28) will converge to an equilibrium if

, (Costa and Fragoso, 1992). A stochastic
Lyapunov function candidate can be written as a set of
coupled matrix inequalities

 . (30)

The jump linear system is stochastically stable, which
in turn implies mean square stability (Ji et al., 1991), if
(30) holds for searched  and given

, with . 

Consider the convex optimization problem of
minimizing the objective function , where

 is an arbitrary initial state vector, such that (30)
holds, and with the interpretation ,

. A smallest upper bound of the loss will
be obtained, .  can be interpreted as a
performance margin or robustness requirement with
respect to the perturbations sampling period and delay
jitter. 

7.  EXAMPLE

The example demonstrates a simple yet interesting
application of the quadratic measure to period and
delay jitter. A nominal period of  is used both
for analysis and control synthesis (with ). The
process, the fixed optimal controller, and weight
matrix are given by

,(31a)

, (31b)

 and .(31c)

Fig. 7  Case 1: Delay jitter, constant .

Fig. 8  Case 2: Sampling period jitter, constant .

Fig. 7 (case 1) and Fig. 8 (case 2) show the timelines
to be compared. In the first case, the delay changes
with a probability of  or , between the values

 for the constant . In the second
case, the period changes with a probability of  or

 between the values , for a
constant delay . 

Fig. 8 also exemplifies that multiple changes of the
control signal are possible despite a constant delay (the
rings are equidistantly spaced).

The states of the chain ( ) have been selected
such that the same transition probability matrix can be
used in both cases. Consider the following choice, 
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interpreted as the amount of variation, and

 as the magnitude.

In Fig. 9 the difference between period and delay jitter
is visualized with lines representing similar values. In
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result for different . When  is zero the two cases
coincide. A conclusion is that the effect of delay jitter
and period jitter is rather similar.
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Fig. 9  Delay jitter (bold) vs. period jitter (thin). 

8.  THE WORST-CASE DELAY JITTER

What kind of jitter distribution will give the worst
performance? This is an interesting question, both
from a theoretical point of view but also from a
practical one. Knowing the worst kind may simplify
analysis and synthesis. If the performance is
acceptable even for the worst type of jitter, the
performance can only be better for other types. It thus
becomes an upper bound. The average delay is indeed
important, thus a fair way to formulate the problem is
to hold the average delay constant when characterizing
the shape of the distribution.

The searching for a worst or best distribution of delay
jitter will here be made by brute force. One technique
suitable for combinatorial problems where the
structure is unknown, is simulated annealing. A
pseudo code listing is found below: 

The tuning parameters are the start temperature
(Tstart), the final temperature (Tfinal) and the
cooling rate (Trate). At each temperature level, at
most max_try number of tries are made in this way:
a modified transition matrix  is picked and changed

randomly using functions pick_random and
change_mch (each time, a row is changed in
random, but there are alternative ways to do this). The
loss is calculated by calc_energy. If it results in a
decrease and in case a minimum value is searched for,
it will be accepted. Otherwise, if it results in an
increase, a random variable that depends on the
current temperature (Tcur) will determine if the
change is valid or not. The lower the temperature, the
smaller the chance of accepting a change in the
“wrong” direction. A clear drawback of this method is
that it does not help asserting that an optimal solution
has been found. Thus, the result has to be interpreted
cautiously. The simulating annealing needs a tuning of
temperatures and the method of changing parameters
to yield an outcome which is satisfactory.

The example system is an inverted pendulum with a
minimum variance controller. The delay jitter is
modelled as a discrete random variable controlled by a
Markov chain. The delay takes on values between and
including the extreme pair  with the
split , and a nominal period  for which the
closed loop system behaves well. The split is equal to
the number of points in the distribution and also equal
to the number of Markov states. The average delay is
kept at  by this jitter construction. 

From an arbitrary initial transition probability matrix
for a fixed , two final transition probability matrices
are seen in Fig. 10 and Fig. 11, for a (local) minimum
and maximum respectively. Recall that the states
jumps from a row to a column and that the row sum
must equal one. In Fig. 10 there are  states and
the figure reveals that if the state switches often, the
loss is less than it would be otherwise. In Fig. 11 there
are  states. The bars are highest at the edges. The
simulated annealing has been interrupted prematurely
to yield results that better shows the general direction.

Fig. 10  Final transition probability matrix, . 
Searching for the minimum loss with the split 
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old_value = low_or_high;
Tcur = Tstart;
while Tcur > Tfinal

for k = 1 to maxtry
old_mch = mch;
ind = pick_random();
mch = change_mch(mch,ind);
value = calc_energy(mch);
valid = is_change(value -

old_value,Tcur);
if valid

old_value = value;
else

mch = old_mch;
endif

endfor
Tcur = Tcur*Trate;

endwhile
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Fig. 11  Final transition probability matrix, . 
Searching for the maximum loss with the split 

. 

9.  RELATED WORK

An optimal controller addressing random delay, was
proposed by Nilsson (1998), and it was shown that the
separation theorem holds. The gain of the controller
changes according to the time stamped sensor to
controller delay, and the expected controller to
actuator delay. The total delay is limited to the
constant sampling period. 

Another method to design an optimal controller for
random delay was described by Xiao et al. (2000). An
iterating inner loop is applied to find the controller and
an outer loop to find a perturbed transition probability
matrix. The delay is a multiple of the sampling interval
and the calculations are based on LMIs.

A tool called Jitterbug was presented by Lincoln and
Cervin (2002), partly following from Nilsson (1998).
It handles interconnected blocks describing the timing
behaviour, and it is based on a tick defining the
granularity. A mix of continuous and discrete time
blocks is possible as well as multirate systems. 

10.  CONCLUSIONS AND FURTHER WORK

With sampling period jitter or control delay jitter,
multiple switches of the piecewise constant control
signal is possible between two sampling instants. In
the proposed model of the computer architecture, the
delay cannot increase faster than time itself, but may
vanish instantaneously. In this paper, it is shown how
the process and loss function can be discretized
accordingly. The aim is primarily analysis of
computer controlled systems, not control synthesis.
The result generalizes the procedure with a fractional
delay found in many text books. The derivation
somewhat resembles multirate systems, which
however deal exclusively with periodic events. The

approach admits a formulation of LMIs. The loss
function can be used at design time as well as at run-
time where the timing behaviour of the underlying
computer system is measured. 

Further work might include adding measurement
delay, investigation of the observability, a release of
the assumption having a fixed controller, a study of
robustness assessment and identification of Markov
states from logged data.
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NOTATION

APPENDIX

The matrices describing the discrete time state update
equation is found by:

(33)

and

(34)

with

(35)

Recall that . The symbol  does not
represent any particular expression but acts as a place
holder for parts of the result not useful when obtaining
the intended integral. The matrix exponential is split
up and calculated for each partial delay, :

(36)

and

(37)

using

. (38)

 and  could also be extracted from this
equation, as an alternative to (35). Recall the
convention  and . Numerical
issues might have to be considered when calculating
the matrix exponentials.

State space matrices for the continu-
ous time dynamic process, p. 
Equivalent discrete time descrip-
tion of the process. 

Discrete time controller, c.

Closed loop system matrix and 
input matrix in discrete time.
Expected value operator.

, , State of the Markov chain.
Loss.
Denotes period, .
Transition probability matrix of a 
Markov chain. 

, State probability vector, especially 
stationary, of a Markov chain.
Weight matrices, continuous and 
discrete time. 
Noise variance.
A notion of covariance.
Time horizon in time units, . 
Also denotes the matrix transpose.
Any delay.
Periodicity .
The matrix trace operator.
Vector of old outputs. 
Control output, continuous and dis-
crete time. 
State noise and measurement noise. 

, The state vector of a process, a con-
troller and closed loop. 
Process output, measured value. 

Ap Bp Cp Dp, , ,

Φp Γpa Γpb, ,

Cp Mp,

Φc Γc Λc, ,

Cc Dc Ec, ,

Φcl Γcl,

E

i j r

J J,

h h ℜ∈

P

π π∞
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R

S

T T ℜ∈

τ

θ θ 1 2 3 …, , ,{ }∈

tr

U tk( )

u t( ) u tk( ),

v tk 1+ tk,( )

w tk( ) e tk( ),

xp t( ) xc tk( )
x tk( )

y t( ) z tk( ),

Φp h( ) Aph( )exp s0s1…sng= =
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0 0
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 
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