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1. INTRODUCTION

The paper compares distinct realizability condi-
tions and realization algorithms in order to sys-
tematize the knowledge and to provide the explicit
formulas for calculation the differentials of the
state coordinates which, in case the necessary and
sufficient realizability conditions are satisfied, can
be integrated to obtain the state coordinates. Our
aim is to extend the results of (Kotta and Mullari,
2003) to the multi-input multi-output (MIMO)
case. In the above paper three apparently distinct
(algebraic, geometric and Lie brackets based) in-
trinsic necessary and sufficient realizability con-
ditions (der Schaft, 1987; der Schaft, 1989; De-
laleau and Respondek, 1995; Moog et al., 2002)
for input-output differential equation are proved
to be equivalent. Moreover, it was shown that the
sufficient algorithm-dependent realizability con-
ditions (Crouch and Lamnabhi-Lagarrigue, 1988;
Glad, 1989) are tightly related to the above in-

1 This work was partially supported by the Estonian
Science Foundation Grant nr. 5405.

trinsic condsitions as the algorithm constructs
the basis vectors for the algebraic condition. Fi-
nally, alternative explicit formulas for calculation
the differentials of the state coordinates is sug-
gested. Since in (Moog et al., 2002) only single-
input single-output (SISO) systems are studied,
instead of the above paper, we concentrate on
paper (Kotta, 1998) that gives algebraic condi-
tions under which the derivatives of the inputs can
be eliminated in the generalized state equations
and so, can be viewed as realizability conditions.
We also extend the algorithms for calculating the
state coordinates from (Crouch and Lamnabhi-
Lagarrigue, 1988; Glad, 1989) and explicit formula
from (Kotta and Mullari, 2003) for calculation
the differentials of state coordinates to the MIMO
case. Note that generalization to the MIMO case,
though technically involved, is not difficult once
the extended system corresponding to the set of
input-output equations, is properly defined (more
about this in Section 3), and the results carry over
to the MIMO case.



Note that explicit formula for calculating the basis
of Hs+2 is valid only under the assumption that
H1, . . . ,Hs+1 are completely integrable, though
this assumption was erroneously missing in our
previous paper (Kotta and Mullari, 2003).

Note that it is not our purpose to compare the
results which study realization in specific state-
space form, e. g. bilinear (Sontag, 1988), poly-
nomial (Wang and Sontag, 1992) or state affine
(Liu and Moog, 1994; Crouch and Lamnabhi-
Lagarrigue, 1992).

2. THE REALIZABILITY CONDITIONS

Consider a nonlinear system described by p (i =
1, . . . , p) i/o differential equations where the high-
est derivatives of y appear linearly

y
(ni)
i = ϕi(yk, . . . , y

(nik)
k , uj , . . . , u

(sij)
j ,

k = 1, . . . , p, j = 1, . . . ,m).
(1)

Assumption 1. System (1) is strictly proper, i. e.
sij < ni, for i = 1, . . . , p, j = 1, . . . ,m.

Assumption 2. System (1) is in a canonical form,
which means that, ni ≥ 1, n1 ≤ n2 ≤ . . . ≤ np,
nik < min(ni, nk), and n1 + n2 + . . . + np = n is
the order of the system.

The latter implies that whenever (1) admits a Kal-
manian realization, the indices ni, associated to
each output yi, i = 1, . . . , p, are the observability
indices of any observable state-space realization of
order n. The form (1) is an extension of the ech-
elon canonical matrix description, introduced in
(Popov, 1969) for linear systems. Note that every
strictly proper system can be transformed into the
above form (der Schaft, 1988). Define s := max sij

and note that Assumption 2 yields s < np
2 .

The realization problem studied in this paper is
defined as follows. Given equations (1), with ϕi(·)
analytic, find, if possible, the state coordinates

x ∈ IRn, x = ψ(yi, . . . , y
(ni−1)
i , uj , . . . , u

(s)
j ), i =

1, . . . , p, j = 1, . . . ,m) such that in these coor-
dinates the system takes the classical state space
form, called the realization of (1):

ẋ = F (x, u), y = h(x, u). (2)

The solution of the realization problem in (der
Schaft, 1987; der Schaft, 1989; Delaleau and Re-
spondek, 1995; Kotta, 1998) is formulated in
terms of the extended state-space system,

2 As for differences between the geometric conditions (der

Schaft, 1989) and the commutativity conditions (Delaleau
and Respondek, 1995) for the case s = np, see (Delaleau

and Respondek, 1995)

ż = f(z) +

m
∑

j=1

gjvj , (3)

associated with (1), with the inputs vj = u
(s+1)
j ,

the state z = [y1, . . . , y
(n1−1)
1 , . . . , yp, . . . , y

(np−1)
p ,

u1, . . . , um, . . . , u
(s)
1 , . . . , u

(s)
m ]T ∈ IRn+m(s+1) and

the vector fields f(z) and gj defined respectively
as f(z) = [z2, . . . , zn1

, ϕ1(z), . . ., zn1+...+np−1+2,
. . ., zn, ϕp(z), zn+2, . . . , zn+s+1, 0, . . . ,
zn+(m−1)(s+1)+2, . . . , zn+m(s+1), 0]

T and gj =
[0 . . . 010 . . . 0]T where the (n+ms+ j)th element
is the only non-zero entry of gj . In many papers
on nonlinear control, system (3) is treated as
the realization of (1). The disadvantage of the
extended state space realization is that it uses
the (s + 1)th derivative of control u(s+1) = v
as input. For linear systems it is possible to find
an extended state coordinate transformation such
that the system description in the new coordinates
does not involve the explicit differentiation of the
input. Unfortunately, this is not always possible
for nonlinear systems. Therefore, it is important
to characterize the input-output models (1) which
do have an observable state space representation
(2) of order n and to provide the algorithm to
find the state coordinates. Below we give a brief
exposition of realizability conditions.

A. Algebraic realizability conditions. Applying the
results of (Kotta, 1998) to a realization problem,
one has to start not from the i/o differential equa-
tion (1) but from the generalized state equations

ż1 = z2
...

żn1−1 = zn1

żn1
= ϕ1(z1, . . . , zn, u, u̇, . . . , u

(s))
...

żn1+...+np−1+1 = zn1+...+np−1+2

...
żn−1 = zn

żn = ϕp(z1, . . . , zn, u, u̇, . . . , u
(s))

(4)

associated to equation (1). Equations (4) are,
aside a slight difference in notations, first n equa-
tions of the extended state space description (3).

In (Kotta, 1998) the realization problem for
MIMO nonlinear systems is studied using the lan-
guage of differential forms. Let K denote the field
of meromorphic functions in the variables {z, v},
associated to (3). Over the field K one can define
a vector space E∗ := spanK{dϕ | ϕ ∈ K}, spanned
by the differentials of the elements of K. Consider
an one-form ω ∈ E∗: ω =

∑

i αidϕi, αi, ϕi ∈
K; its derivative ω̇ is defined according to ω̇ =
∑

i α̇idϕi + αidϕ̇i where ż is defined by (3). The
relative degree r of an one-form ω ∈ spanK{dz}



is defined to be the least integer such that the
rth derivative of one-form ω(r) 6∈ spanK{dz}. If
such an integer does not exist, we set r = ∞. A
decreasing sequence of subspaces {Hk} of E∗ is
defined by (Aranda-Bricaire et al., 1995)

H1 = spanK{dz}
Hk+1 = {ω ∈ Hk | ω̇ ∈ Hk}, k ≥ 1.

(5)

Note that Hk is the space of one-forms whose
relative degree is greater than or equal to k.

Theorem 3. (Kotta, 1998) The i/o differential
equations (1) are locally realizable in the observ-
able state space form (2) iff for 1 ≤ k ≤ s + 2
the subspaces Hk defined by (5) for the extended
system (3) are integrable. The state coordinates
can be found by integrating the basis vectors of
Hs+2.

B. Geometric realizability conditions. The real-
ization problem in (der Schaft, 1987; der Schaft,
1989) is studied using the language of vector
fields. The increasing sequence of distributions

{Sk} of E = spanK{∂/∂yi, . . . , ∂/∂y
(ni−1)
i , ∂/∂uj ,

. . . , ∂/∂u
(s+1)
j , i = 1, . . . , p, j = 1, . . . ,m} is de-

fined by 3

S1 = spanK

{

∂/∂u
(s+1)
j , j = 1, . . . ,m

}

,

Sk+1 = S̄k + [f, S̄k ∩ ker dy ∩ ker du], k ≥ 1

(6)

where S̄ denotes the involutive closure of the
distribution S, and [f, S] denotes the distribution
spanned by all Lie brackets [f,X], withX a vector
field belonging to S. The distribution S∗ = Ss+2

is the minimal conditionally invariant distribution
for the extended system (3). Using the specific
structure of the extended state space system (3),
it has been proved by van der Schaft (1989) that
if Sk, for k = 1, . . . , s+ 2, are all involutive, then

Sk ⊂ ker du ∩ ker dy, k = 1, . . . , s+ 1
Ss+2 ∩ ker du ∩ ker dy = Ss+1

dimSk = km, k = 1, . . . , s+ 2
(7)

Theorem 4. (der Schaft, 1989) The i/o differential
equations (1) are locally realizable in the observ-
able state space form (2) iff all the distributions
S1, . . . , Ss+2 defined by (6) for the extended sys-
tem (3) are involutive.

C. Realizability conditions in terms of commuta-

tivity of iterative Lie brackets. Delaleau and Re-
spondek also start from equations (4). The real-
izability conditions in (Delaleau and Respondek,

3 Note that in (der Schaft, 1987) S1 =

spanK

{

(∂/∂u
(s)
j
)

}

.

1995) are formulated in terms of the iterative Lie
brackets of vector fields f =

∑p

i=1 (ẏi(∂/∂yi)+

. . .+ ϕi(·)(∂/∂y
(ni−1)
i )

)

+
∑m

j=1

(

u̇j(∂/∂uj) + . . .+ u
(s+1)
j (∂/∂u

(s)
j )
)

and

gj = ∂/∂u
(s)
j , j = 1, . . . ,m, defined by the ex-

tended system (3). Denote for j = 1, . . . ,m.

L0
f (∂/∂u

(s)
j ) = ∂/∂u

(s)
j ,

Lk
f (∂/∂u

(s)
j ) =

[

f, Lk−1
f (∂/∂u

(s)
j )
]

, k ≥ 1.

Theorem 5. (Delaleau and Respondek, 1995) The
i/o differential equations (1) are locally realizable
in the observable state space form (2) iff for 0 ≤ q,
r ≤ s, 1 ≤ j, l ≤ m

[

Lq
f

∂

∂u
(s)
j

, Lr
f

∂

∂u
(s)
l

]

≡ 0. (8)

Note that, in order to lower the order of the input
derivative in (4) by one, the condition (8) has to
hold for 0 ≤ q, r ≤ 1, 1 ≤ j, l ≤ m. The latter

condition is satisfied only if ∂2ϕi(·)/ (∂u
(s)
j )2 ≡ 0,

or equivalently if equations (1) are linear with
respect to the highest derivatives of the inputs.
In the MIMO case linearly with respect to the
highest derivatives of controls is not sufficient for
lowering the input derivatives by one. The system
ÿ = yu̇1 + ẏ2u̇2 serves as an example.

3. MAIN RESULTS

The purpose of this section is to prove the equiva-
lence of the three different realizability conditions
recalled in the previous section. Moreover, we will
provide explicit formulas for calculation of the
basis vectors of the subspaces of one-forms Hk,
for k = 3, . . . , s + 2 and extend the algorithm-
based solutions from (Crouch and Lamnabhi-
Lagarrigue, 1988) to the MIMO case. Finally, we
will demonstrate that the latter can be under-
stood as the method to compute the basis vectors
for Hk, k = 3, . . . , s+ 2.

3.1 Relationship of the sequences {Hk} and {Sk}

This subsection establishes the relation between
the sequences {Hk} and {Sk}.

Lemma 6. Assume that the distribution Sk, for
k = 1, . . . , s + 1, is involutive, and the subspace
of one-forms Hk annihilates the distribution Sk.
Then the subspace of one-forms Hk+1 annihilates
the distribution Sk+1, that is Hk+1(Sk+1) ≡ 0 for
k = 1, 2, . . . , s+ 1.



This technical Lemma, proved in (Kotta and
Mullari, 2003) for the SISO case, can be easily
extended to the MIMO case, if we assume (as
done in this paper) that in (3) we take the highest
derivatives of all inputs equal to s = max sij

even if in equations (1) the highest derivatives
of the components are different. Otherwise, Sk 6⊂
ker du∩ker dy for all k values up to s+1 as in (7),
and therefore, starting from next k Sk. Therefore
we omit the proof. Note, that the condition of
involutivity of Sk is essential to the proof of
Lemma 6. If we drop this assumption, Hk+1 does
not necessarily annihilate Sk+1.

Lemma 7. For the extended system (3), dimHk =
n+ (s+ 2− k)m, for k = 1, . . . , s+ 2.

Theorem 8. The subspaces Hk, k = 3, . . . , s + 2,
defined by (5) for the extended system (3) are
integrable iff the distributions Sk, k = 3, . . . , s+2
defined by (6) for the extended system (3) are
involutive.

Proof. From involutivity of a constant dimen-
sional distribution follows complete integrability
of its maximal annihilator and vice versa. There-
fore, to prove the theorem, we have to show
that Hk+1 for k = 2, . . . , s + 1 is the maxi-
mal annihilator of Sk+1, i. e. Hk+1(Sk+1) ≡ 0
and that codim Hk+1 = dim Sk+1, given that
either Sk is involutive or Hk is completely in-
tegrable. The codimension of Hk in E∗ is de-
fined to be the dimension of E∗/Hk. Consider

the subspace H2 = spanK{dyi, . . . ,dy
(ni−1)
i , i =

1, . . . , p,duj , . . . ,du
(s−1)
j , j = 1, . . . ,m} which

is obviously a maximal annihilator of S2 =

spanK{∂/∂u
(s)
j , ∂/∂u

(s+1)
j }, i. e. H2(S2) ≡ 0, and

moreover, codimH2 = dim S2. The proof is now
by induction on k. We will show that if Sk is
involutive then Hk+1 is a maximal annihilator of
Sk+1. From Lemma 6, Hk+1(Sk+1) ≡ 0. Next,
since by Lemma 7 dim Hk+1 = dim Hk − m,
or equivalently, codim Hk+1 = codim Hk + m,
the proof is completed by the fact that from (7)
dim Sk+1 = dim Sk +m.

Note thatH1 is integrable by the definition and in-
tegrability ofH2 follows from the special structure
of the extended system (3). In a similar manner
S1 is involutive by the definition and involutivity
of S2 comes from the specific structure of (3).

3.2 The relationship between the geometric condi-

tions and conditions in terms of iterative Lie

brackets

Theorem 9. Involutivity of the distributions S1,
. . ., Sk, for k = 3, . . . , s + 2 is equivalent to
condition (8) for 0 ≤ q, r ≤ k − 2, 1 ≤ j, l ≤ m.

This Theorem, proved in (Kotta and Mullari,
2003) for the SISO case, can again be easily
extended to the MIMO case if in (3) we take
the highest derivatives of all inputs equal to s =
max sij . We omit the proof.

3.3 The algorithms for calculating the basis vec-

tors of Hs+2

In principle, Hs+2 can be found using either def-
inition (5), or the algorithm, given in (Aranda-
Bricaire et al., 1995). However, neither of them do
not take into account the specific simple structure
of the extended system (3). If we take this struc-
ture into account, and assume integrability of Hk,
k = 1, . . . , s + 1, the following recursive explicit
algorithm can be obtained to compute the basis of

Hk+2 = spanK{ω
[k+1]
1,1 , . . . , ω

[k+1]
1,n1

, . . . , ω
[k+1]
p,1 , . . .,

ω
[k+1]
p,np ,du, . . . ,du

(s−k−1)} from definition (5):

ω
[0]
i,li

= ω
[1]
i,li

:= dy
(li−1)
li

,

ω
[k+1]
i,li

= ω
[k]
i,li

−(−1)k
m
∑

j=1

〈

ω
[k]
i,li
, Lk

f∂/∂u
(s)
j

〉

du
(s−k)
j ,

(9)

i = 1, . . . , p, li = 1, . . . , ni k = 1, . . . , s.

At the kth step of the algorithm the one-form ω
[k]
i,li

,
obtained at the previous step, is orthogonalized

with respect to the vector fields Lk
f (∂/∂u

(s)
j ), j =

1, . . . ,m. From direct computation we get that

ω
[k+1]
i,li

annihilate, or equivalently, the subspace of
one-forms Hk+2 annihilates all the vector fields

Ll
f (∂/∂u

(s)
j ), l = 0, . . . , k, j = 1, . . . ,m.

Alternatively, instead of (9), another formula can

be derived to compute ω
[k+1]
i,li

, k = 1, . . . , s in
terms of Lie derivatives of one-forms, and not in
terms of Lie derivatives of vector fields as in (9):

ω
[k+1]
i,li

= ω
[k]
i,li
−

m
∑

j=1

〈

Lk
fω

[k]
i,li
,

∂

∂u
(s)
j

〉

du
(s−k)
j .(10)

The advantage of using algorithms (9) or (10)
lies in the fact that they can be directly and
easily implemented in computer algebra program
Mathematica. However, integration of the sub-
space Hs+2 to obtain the state coordinates can
be difficult.

The formulas (9) and (10) are equivalent. The
proof is a straightforward extension of the proof
in the SISO case ((Kotta and Mullari, 2003)) and
therefore omitted.



3.4 Algorithmic realizability conditions

We extend to the MIMO case the construc-
tive algorithm (up to the solution of the set
of partial differential equations) for finding, if
possible, the state coordinates from the input-
output differential equations, given in (Crouch
and Lamnabhi-Lagarrigue, 1988; Glad, 1989).

Define ȳ = (y1, . . . , y
(n1−1)
1 , . . . , yp, . . . , y

(np−1)
p )

and ū = (u1, . . . , u
(s−1)
1 , . . . , um, . . . , u

(s−1)
m ). The

starting point for the algorithm are not equations
(1), but the equations where the highest deriva-

tives of controls, u
(s)
j appear already linearly

y
(ni)
i =

m
∑

j=1

αij(ȳ, ū)u
(s)
j + βi(ȳ, ū),

i = 1, . . . , p

(11)

The goal of the first step of the algorithm is to
find the new generalized state variables z̃1, . . . , z̃n

such that ˙̃z does not depend on u(s). Note that
only the n1th, the (n1 + n2)th, . . . and the nth
equations of (4) depend on u(s). So, one can define
z̃i = zi, for i = 1, . . . , n1− 1, n1 +1, . . . , n1 +n2−
1, . . . , n1 + . . . + np−1 + 1, . . . , n − 1 and find for
k = n1, n1 + n2, . . . , n

z̃k = rk(ȳ, ū) (12)

such that ˙̃zk =
∑p

i=1((∂rk/∂yi)ẏi + . . .+

(∂rk/∂y
(ni−2)
i )y

(ni−1)
i +(∂rk/∂y

(ni−1)
i )[αij(·)u

(s)
j +

βi(·)]) +
∑m

j=1((∂rk/∂uj)u̇j + . . .+

(∂rk/∂u
(s−1)
j )u

(s)
j ) does not depend on u(s), which

means that rk(·) has to be a solution of the set of
m partial differential equations in variables ȳ and
ū

〈

dr,−Lf∂/∂u
(s)
j

〉

=
p
∑

i=1

αij(·)
∂r

∂y
(ni−1)
i

+
∂r

∂u
(s−1)
j

= 0.
(13)

The equation (13) is solvable if (8) is satisfied
for 0 ≤ q, r ≤ 1. Then there exist, at least
locally, n + (s − 1)m independent solutions r1 =

y1, . . . , rn1−1 = y
(n1−2)
1 , . . . ,

rn1+...+np−1+1 = yp, . . . , rn−1 = y
(np−1)
p , rn+j =

uj , . . . , rn+m(s−1)+j = u
(s−2)
j and p solutions

rn1
, rn1+n2

, . . . , rn of the form (12), whose Jaco-

bian with respect to yi, . . . , y
(ni−1)
i , uj , . . . , u

(s−1)
j

is nonsingular and that satisfy (13). The gen-
eralized state equations in the new coordinates
become

˙̃z1 = z̃2
...

˙̃zn1−2 = ˙̃zn1−1

˙̃zn1−1 = ϕ̃11(z̃1, . . . , z̃n, u, u̇ . . . , u
(s−1))

˙̃zn1
= ϕ̃12(z̃1, . . . , z̃n, u, u̇, . . . , u

(s−1))
...

˙̃zn1+...+np−1+1 = z̃n1+...+np−1+2

...
˙̃zn−2 = z̃n−1

˙̃zn−1 = ϕ̃p1(z̃1, . . . , z̃n, u, u̇, . . . , u
(s−1))

˙̃zn = ϕ̃p2(z̃1, . . . , z̃n, u, u̇, . . . , u
(s−1))

(14)

At the next step, if ϕ̃ij(z, u, . . . , u
(s−1)), i =

1, . . . , p, j = 1, 2 are linear in the highest time

derivative of controls u
(s−1)
j , then the same pro-

cedure can be repeated to them to produce a new
generalized state space representation with u(s−2)

as the highest time derivative of the input.

Next, we will demonstrate that the algorithm
described above, constructs exact basis vectors
for the subspaces of one-forms H3, whenever
possible. Note that equation (13) is solvable iff
H3 is integrable, and the solutions rk(·), k =
n1, n1 + n2, . . . , n of the form (12) define the
new state coordinates z̃k = rk(ȳ, ū). We will
demonstrate that drk = dz̃k ∈ H3. According

to (9), H3 = spanK{dyi, . . . , dy
(ni−2)
i , ω

[2]
i,ni

, i =

1, . . . , p,du, . . . ,du(s−2)}, where for (11)

ω
[2]
i,ni

= dy
(ni−1)
i − αij(·)du

(s−1)
j . (15)

Note that the one-form ω
[2]
i,ni

annihilates Lf

∂

∂u
(s)
j

.

So, if ω
[2]
i,ni

is exact, the solution of (13) can be ob-

tained by integrating ω
[2]
i,ni

. Though the one-form
(15) is not necessarily exact, from integrability of
H3, it is possible to find the integrating factors
that make the solution exact and equal to dri, ri
being the solution of (13).

In the similar manner it can be demonstrated that
the next steps of the algorithm construct the exact
basis vectors for H4, . . . ,Hs+2, whenever possible.

4. EXAMPLE

We will demonstrate on the example below the
equivalence of the considered methods. Consider
the system

ÿ1 = y2u1 + u̇2, ÿ2 = y1u̇1 (16)

Note that for (16)

f = ẏ1
∂

∂y1
+ (y2u1 + u̇2)

∂

∂ẏ1
+ ẏ2

∂

∂y2
+ y1u̇1

∂

∂ẏ2



+u̇1
∂

∂u1
+ u̇2

∂

∂u2
+ ü1

∂

∂u̇1
+ ü2

∂

∂u̇2

In order to calculate the sequence of subspaces
{Hk} by (9) we first find

Lf

∂

∂u̇1
= −

∂

∂u1
− y1

∂

∂ẏ2

Lf

∂

∂u̇2
= −

∂

∂u2
−

∂

∂ẏ1

which also yields that Lie brackets based condi-

tions (8) are satisfied. So, ω
[2]
11 = dy1, ω

[2]
21 = dy2,

ω
[2]
12 = dẏ1 − du2, ω

[2]
22 = dẏ2 − y1du1 and

H3 = spanK{dy1,dẏ1 − du2,dy2,dẏ2 − y1du1}

which is obviously completely integrable.

Next calculate according to (6),

S3 = spanK

{

∂

∂u1
+ y1

∂

∂ẏ2
,
∂

∂u̇1
,
∂

∂u2
+

∂

∂ẏ1
,
∂

∂u̇2

}

which is involutive, and the maximal annihilator
of H3. We can find the coordinates

x1 = y1 x2 = ẏ1 − u2,
x3 = y2, x4 = ẏ2 − u1y1

(17)

of the integrable classical state space realization
by integrating the integrable basis vectors of H3,

that is after changing ω
[2]
22 by ω

[2]
22 −u1ω

[2]
11 . So, the

state equations are

ẋ1 = x2 + u2 ẋ2 = x3u
ẋ3 = x4 + u1x1 ẋ4 = −u1(x2 + u2)

From (13), the state coordinates r2 and r4 can be
found as the solutions of the set of two partial
differential equations

∂r

∂u1
+ y1

∂r

∂ẏ2
= 0,

∂r

∂u2
+ y1

∂r

∂ẏ1
= 0

whereas r1 = y1 and r3 = y2. It is easy to see,
that x2 and x4 in (17) provide the solution.
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