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Abstract: The incorporation of distributed control systems in power plants has become 
increasingly standard. However, particularly under alarm conditions, ease of access to 
plant-wide signals complicates the task of monitoring plant operation. Data mining 
techniques are ideally suited to dealing with such data, which tends to be highly correlated 
and collinear. Typically, models identify relationships under normal conditions from 
historical data. Subsequently, these discovered relationships form the basis for detecting 
unusual deviations from trained behaviour. Principal component analysis and partial least 
squares techniques are demonstrated, and shown to take full advantage of readily available 
DCS data, and provide an informative monitoring method. Copyright  2005 IFAC 
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1. INTRODUCTION 
 

Data mining is a generic term encompassing a wide 
variety of techniques which attempt to identify novel, 
and hopefully informative, patterns in data. Although, 
conceivably containing valuable information, data is 
generally archived, with its full potential never 
realized. Successful applications have been associated 
with industrial processes and scientific research fields, 
e.g. chemometrics and chemical engineering (Chen 
and Liao, 2002), industrial process control (Sebzalli, et 
al., 2000) and to a lesser extent power engineering 
(Rayudu, et al., 1997). Emphasis has been placed on 
creating online operator support systems for fault 
detection and diagnosis, and high-level interpretation 
of system operation and performance for engineers.  
 
Ballylumford power station is the largest power station 
in N. Ireland, housing 6 thermal units, 3 x 120 MW 
and 3 x 200 MW. Recently, 500 MW and 106 MW 
CCGTs have been commissioned. The primary data 
source within the power station is the distributed 
control system (DCS) which records exceeding 15,000 
analogue sensors. The frequency of measurement and 
distribution of sensors provide significant redundancy, 
which, as discussed in Section 2, can be exploited for 
fault detection and signal replacement using techniques 
such as principal component analysis. Furthermore, 
within these records there is potential information 

regarding factors affecting daily plant operation, but 
obscured by the sheer volume of data presented. This 
information may help improve plant operation by 
identifying variables influencing efficiency and plant 
performance, while enabling a comparison of different 
operator shifts and comparative performance across 
individual units. The monitoring of unit efficiency and 
emissions levels, as measures of plant performance, is 
discussed in Section 3, and partial least squares (PLS) 
is demonstrated as a viable solution. The PLS approach 
is then extended in Section 4 by incorporating a neural 
network for the inner mapping to enable modelling of 
plant behaviour over non-linear conditions. 
 
 
2. PROCESS AND SENSOR FAULT MONITORING 
 
With industrial processes, and the associated computer 
support systems, becoming ever more complex the 
challenge for an operator to detect and cope with real-
time problems becomes ever more challenging. 
Introduction of a DCS can provide quantifiable 
improvements in both productivity and plant 
manoeuvrability. However, a significant side effect has 
been increased accessibility to a range of plant-wide 
signals. Consequently, a relatively common experience 
with any monitoring system is that of faulty sensors. 
The process operators must also distinguish genuine 
faults, where unusual measurements actually reflect 
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plant behaviour, and/or variations in plant performance 
arising from changes in operating conditions, product 
quality, etc. Fortunately, within a power station 
environment many sensor measurements are highly 
correlated due to parallel paths for the steam and gas 
circuits, a closed loop for the steam / water circuit, etc. 
 
When a particular sensor becomes faulty it is desirable 
to first detect that there is a problem, identify the 
failing signal, and finally, disable the sensor or, if 
possible, reconstruct the readings. For a process or 
actuator fault a different strategy is required. With the 
fault identified and diagnosed by the operators, the 
plant control systems may be able to minimize the 
effects of the fault. Any degradation in performance 
should be considered, however, along with longer term 
implications for plant life and maintenance. 
Alternatively, entire subsystems, or the process itself, 
may be taken off-line for further assessment. 
 
2.1 Principal component analysis 
 
Perhaps, the simplest method of detecting anomalous 
behaviour is univariate statistical monitoring, whereby 
upper and lower bounds are defined for each signal. 
However, as but one example, a stuck sensor may 
present a faulty value which is actually within limits. 
Should the process be well defined and comprise only 
limited inputs / outputs, model-based approaches may 
be constructively applied, assuming fault mechanisms 
are known and have been incorporated into the model. 
However, this task can be time consuming, requiring 
comprehensive application knowledge. 
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Fig. 2.  Sensor validity index – sensor bias 

In contrast, data mining techniques tend to be data 
rather than knowledge driven, and require much less 
refinement for particular processes. The approach 
adopted here is principal component analysis (PCA) 
which aims to reduce the dimensionality of a set of 
variables, while retaining as much of their variance as 
possible. This is achieved by identifying linearly 
independent latent variables (principal components). A 
reduced set of principal components may then be 
selected which capture the essential correlations and 
the majority of the observed variability. PCA has been 
used in a wide range of applications including batch 
monitoring from an industrial polymerisation reactor 
(MacGregor and Kourti, 1995) and sensor fault 
detection in a boiler process (Dunia, et al., 1996). 
 
Since a system may have hundreds, if not thousands, of 
sensors, multi-block methods can be introduced, for 
convenience and practicality, by defining distinct 
linking subsystems (Nomikos and MacGregor, 1994). 
Such an approach is particularly convenient here for 
the 500 MW CCGT, consisting of a multi-shaft 
arrangement of 2 x 160 MW gas turbines (GTs), 
supplying a 180 MW steam turbine (ST). A single 
model can thus be created for each gas turbine. Further 
subdivision into condenser, HRSG and turbine stages 
can also be readily identified. The advantages of multi-
block methods become apparent when fault 
identification is considered. Should a sensor fail, then 
only the model associated with that particular section 
of the plant will be affected, at least at first, making 
fault diagnosis that much more straightforward.  
 
Once a (multi-block) model for normal operating 
conditions has been developed, it may be used to 
determine whether recorded plant measurements are 
consistent with historical values and neighbouring 
sensors. Calculation of the squared prediction error 
(SPE) and Hotelling’s T 

2 test can quickly help identify 
differences between the actual and reconstructed value 
of a variable (Sebzalli, et al., 2000). Both indicators 
are affected by noise, etc., but false alarms can be 
largely eliminated by simple filtering, and adjustment 
of the associated test threshold. Plotting of t scores can 
be combined with the above methods to distinguish 
between a failing sensor and a fault. When a process 
fault occurs, the individual points on the t score plots 
drift from the normal grouping into a separate cluster. 
The relative position of these clusters can assist in 
diagnosis (Kourti and MacGregor, 1995). 

ig. 1.  Reconstructed reheater outlet pressure signal

 
Having confirmed that there is a sensor fault the next 
step is to identify the failing sensor. Identification and 
reconstruction can be achieved by assuming each 
sensor has failed, and observing the reduction in SPE 
before and after reconstruction from the remaining 
signals. However, in certain situations the reduction in 
SPE can affect all inputs, making the faulty sensor 
unidentifiable. Instead, a sensor validity index (SVI) 
can be calculated for each variable (Dunia, et al., 
1996). System transients and measurement noise can 
lead to false triggering so each signal is filtered and 
compared with a user-defined threshold. 



2.2 PCA tests and results 
 
Within Ballylumford power station data is archived 
from the DCS using PI universal data server. Given the 
large number of analogue sensors involved, spread 
across multiple units, data compression is essential. 
However, care must be taken that limited storage 
capabilities do not ultimately impinge on data quality. 
For each variable, an exception deviation is defined 
such that a value is only recorded when the signal 
changes sufficiently from that last recorded. The data 
is subsequently compressed by defining a compression 
deviation, whereby points are only archived when 
recorded values fall outside an error boundary 
parallelogram. Finally, the data is saved as scaled 
integer values. Consequently, depending on the chosen 
PI settings, only a few, or instead tens and hundreds of 
datapoints may be recorded over a given period. 
 
Experience has shown that operators and engineers 
tend to focus on key unit parameters, and consequently 
for some sensors data is available at high resolution 
and quality, while for many others detail has been  
lost. For high-level process monitoring and fault 
identification and analysis this arrangement has 
worked well. However, one of the strengths of PCA, 
and later in this paper partial least squares, is its ability 
to integrate and assimilate information from multiple, 
correlated plant sensors. To an extent this ability has 
been compromised, although the main objective within 
a PCA model is to identify steady-state relationships 
between signals under normal conditions. The creation 
and validation of dynamic process models would 
undoubtedly be more challenging. 
 
Training data for PCA analysis was obtained by 
selecting periods of interest in the PI data archive, with 
snapshots of all DCS process variables created at 
specified time intervals using linear interpolation 
between the archived datapoints. The PCA methods 
described earlier were then applied to a phase 2,  
200 MW unit at the power station. Individual faults 
were detected using the SPE and T 2 indicators, and 
further clarified using the sensor validity index, with 
the reconstructed value substituting for the failing 
sensor. Otherwise, the t scores were examined to 
confirm that the fault was actually with the plant, and 
corrective maintenance or other actions scheduled. 
 
Two PCA models were developed for normal 
operating conditions around generation outputs of 100 
and 150 MW, with 2 principal components considered 
sufficient in both cases, following the PRESS statistic 
(Wold, 1978). Using a validated simulation of the plant 
(Lu and Hogg, 1995) for convenience, a 0.1% bias was 
introduced into the reheater outlet pressure signal after 
5 hours of operation while generating at approximately 
150 MW, Figure 1. Based on a 95% confidence limit, 
the SPE and T 

2 tests promptly detect the fault after 30 
and 10 minutes (not shown). Figure 2 shows the SVI 
fluctuations for each variable, with the reheater outlet 
pressure signal readily identified as being in error. The 

index for this signal falls in the range 0.3 – 0.6, against 
a threshold of 0.75. As the fault is with the sensor, a 
reconstructed (unbiased) measurement is substituted, 
Figure 1. Although not directly utilised for control, this 
signal forms an input to an on-line, advisory efficiency 
monitoring system on the plant, and thus invalid 
measurements may unduly influence operator actions. 
 
With the plant now operated at a load of 100 MW, a 
positive drift is applied to the main steam pressure 
signal, regulated by a PI controller operating on fuel 
flow. Since the faulty signal is fed back for control 
there is minimal impact on the measured value,  
Figure 3. Instead, the controller, observing that the 
pressure signal is drifting upwards decreases fuel flow, 
and associated air flow, so that the faulty sensor 
indicates the correct value. In actuality, the main steam 
pressure is being progressively reduced, with knock-on 
effects for many sensors around the plant. Using the 
SPE and T 2 measures, the fault is detected after 50 and 
30 minutes (not shown), and confirmed by the SVI plot 
for each sensor, Figure 4. Unlike Figure 2, the effects 
of this fault are more significant across the plant. It is 
now more challenging, although still straightforward, 
to identify the failing sensor. The steam pressure signal 
can be reconstructed by the PCA model and Figure 3 
confirms that the pressure falls as a result of the fault. 
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Fig. 3.  Reconstructed main steam pressure signal 
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Fig. 4.  Sensor validity index – sensor drift 



3. OPTIMISATION AND DIAGNOSIS 
 
Ballylumford power station operates on both heavy 
residual fuel oil and gas. Although initially designed 
for oil operation alone, the plant is now predominantly 
operated with gas. However, this is provided under an 
interruptible contract, requiring operation using oil on 
occasion. Not surprisingly, using two different fuels 
requires subtle changes in control strategies by the 
operators. Optimisation of unit efficiency is a multi-
dimensional problem with factors such as fuel calorific 
value, burner configuration, daily cyclic variations of 
local sea temperature, etc. contributing to the end 
result. Issues such as condenser clogging are common 
to both types of operation (Ritchie and Flynn, 2003). 
However, soot buildup, for example, is much more 
significant for oil operation. Attemperator spraying is 
also affected: for gas operation, the flame ball is higher 
up and further back in the furnace, resulting in a 
differing heat distribution and more reheater spraying. 
 
3.1 Partial least squares 
 
With power generation becoming an increasingly 
competitive market place it is important that individual 
units operate at maximum possible efficiency while 
meeting contractual load obligations and monitoring 
emissions levels. From available plant records it is 
possible to investigate periods of operation identified 
by the operators as being representative of good plant 
performance. Potentially, this information can then be 
used to develop a best case model. 
 
Partial least squares (PLS) is a robust, multivariate 
linear regression technique suitable for the analysis and 
modelling of noisy and highly correlated data. Using 
techniques previously applied in PCA, a reduced order 
model is developed which attempts to explain the 
variation in the process that is most predictive of the 
product quality variables. This procedure is enhanced, 
through linear regression, to provide a relationship 
between the process variables and the product quality 
variables. The technique has been successfully applied 
to various process control, and chemical engineering 
applications, such as monitoring of both a fluidised bed 
reactor and extractive distillation column (Kresta, et 
al., 1991) and steel casting (Zhang, et al., 2003). 
 
3.2 PLS tests and results 
 
PLS models were created using plant data gathered 
over the period of two weeks for a phase 1, 120 MW 
unit which was being operated for that period on oil. A 
hybrid model could be formed by gathering data for 
both oil and gas operation, but it was viewed as being 
much more informative to create distinct models for 
each fuel. Although the unit went through several load 
cycles during this period, the model was specifically 
trained for operation between 100 – 120 MW, as the 
unit was normally scheduled to generate within this 
range. Three quality variables were selected, namely 
unit thermal efficiency, NOx and SOx emissions, with 
distinct models created for each output variable. 

Having developed distinct PLS models, it was of some 
interest to then determine how each input variable 
contributed to the % unexplained variance for the first 
component of each model. This is a measure of how 
individual variables affect the quality variable. Figures 
5a and 5b show the % explained variance of the data 
block, for both efficiency and SOx models. There are 
many similarities between the bar charts with, for 
example, unit output (1), primary steam flow (2), 
economiser feed inlet temperature (7), etc. being 
significant for both models. It is of greater interest, 
however, to identify differences between the charts - 
boiler flue gas oxygen (18) is significant for SOx, while 
variables such as final outlet steam temperature A (8) 
and B (9), HP turbine exhaust temperature (29), etc. 
are much more significant for the efficiency model. 
These results highlight the most important variables to 
be monitored / adjusted when attempting to achieve 
different operational goals. 
 
The monitoring capabilities of the PLS models could 
now be investigated on the plant. Figure 6 shows the 
normalised efficiency during a latter period, with the 
plant again running on oil. Superimposed on the graph 
is the PLS estimate of the plant's efficiency, with a 
clear distinction visible between the characteristics. 

Fig. 5a.  Bar chart – efficiency model 
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Fig. 5b.  Bar chart – SOx model 



If the scores for the first two components of the PLS 
model are examined, Figure 7, region A represents the 
training data while region B represents the latter 
period. The t1 score, in particular, is now significantly 
higher, suggesting that examination of how this score 
is formed (from the measured variables) should reveal 
the affected plant section. Figure 8 plots the change in 
t1 score contribution for each PLS variable, revealing 
that condenser cooling water temperatures A (22) and 
B (23), and condensate temperature (24) are unusually 
high. It is known, from examination of the operator 
logs, that the unit was switched off on the next day, 
following which, as part of maintenance procedures, 
debris was removed from the condenser pipework. 
 
 

4. NON-LINEAR PLS MODELLING 
 

It was shown in the previous sections that linear 
models, both PCA and PLS, operate well over a 
limited range. However, all processes are inherently 
non-linear, with power generation being no exception. 
When applying PLS to a non-linear problem the minor 
latent variables cannot always be discarded, since they 
may actually contain significant information about the 
non-linearities. Intuitively, however, the non-linearities 
can be recognized using non-linear transformations of 
the original variables. More advanced methods have 
also been proposed including non-linear extensions to 
PCA (Li, et al., 2000), and applying neural network, 
fuzzy logic, etc. methods to directly represent the non-
linearities (Tan and Mavrovouniotis, 1995). 
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Fig. 6.  PLS target efficiency for oil operation 
 

-2 0 2 4 6 8 
-3 

-2 

-1 

0 

1 

2 

3 

A B  

t1 score  

t 2
 s

co
re

 

 

Fig. 7.  t2 v t1 scores plot – condenser fouling 
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Fig. 8.  Contribution to t1 score – condenser fouling 
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A more structured approach, considered here, is to 
introduce a non-linear function (a neural network is 
used for each component) linking the output scores u 
to the input scores t, without modifying the input and 
output variables (Baffi, et al., 1999). Since the neural 
network is merely required to capture the relationship 
between t and u, a variety of neural structures can be 
arbitrarily applied. In this case a radial basis function 
(RBF) network has been chosen over other approaches. 
The advantage is that having chosen the number and 
position of basis function centres (using, for example, 
k means clustering, etc. and / or a priori experience) 
the remaining weights then appear as linear terms, 
which can normally be conveniently determined using 
least squares techniques. It should be noted, however, 
that while the (non-linear) model dimension is 
reduced, the dependency between latent variables is 
not as transparent as in linear methods. 
 
4.1 RBF-PLS tests and results 
 
RBF-PLS models were trained using efficiency, NOx 
and SOx emissions as quality variables, using data 
from a 200 MW unit firing on gas, across the unit’s 
full operating range, 60 - 200 MW. Selection of centres 
and training of the RBF networks for each component 
was performed using the Matlab neural network 
toolbox. The NOx model, for example, required 30 
neurons for the first component, and 5 neurons for 
subsequent components, such that the first component 
explained 95% of the variance in the quality data. 

NOx emissions 
RBF-PLS model 40 
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Fig. 9.  RBF-PLS model – predictive performance



Figure 9 confirms the predictive performance of the 
RBF-PLS model, using one component, with the unit 
load varying between 80 and 200 MW over a 10 hr test 
period. What is most clear from the figure is the poor 
quality of the NOx data itself, as measurements are 
only available every 30 seconds, from alternate side of 
the boilers, and at a limited resolution. 
 
 

5. CONCLUSIONS 
 

The introduction of distributed control systems into 
many industrial processes has brought clear advantages 
in terms of productivity, plant manoeuvrability, etc. 
However, the vast amount of data which then becomes 
available is generally put to minimal use. This 
historical resource can, however, be exploited using 
data mining techniques. The application considered 
here was that of process monitoring at a thermal power 
station, taking advantage of data gathered from 
existing monitoring equipment. Traditional operator 
practice has been reactive, whereby actions are taken 
following the triggering of process alarms, often set 
over-responsive and mode insensitive – PCA methods 
have enabled a more proactive role, providing early 
warning of irregularities, and perhaps most importantly 
an increased awareness of data potential. Faults arising 
both with the plant and instrumentation were first 
investigated. A PCA model under normal operating 
conditions was created, which focused on identifying 
unusual deviations. PCA models were created for 
limited operating ranges and their ability to detect, and 
ultimately correct, sensor problems were discussed. 
 
Monitoring of operating performance, and in particular 
unit efficiency and environmental emissions measures, 
can be greatly assisted through the availability of 
extensive historical records. Previously, only a 
restricted number of high-level variables (indicators) 
were regularly monitored, with the consequence that 
deviation in current unit performance could not easily 
be distinguished from ongoing plant problems, or 
seasonal effects. Distinct PLS models were developed 
to model thermal efficiency, NOx and SOx emissions. 
Subsequently, by running these models in parallel with 
the plant, operators could monitor how close to 
optimum the plant was performing. Furthermore, by 
tracking t score plots, and observing how individual 
signals contributed to the PLS scores it was shown that 
discrepancies in plant performance could be pinpointed 
to particular plant items. The PLS models were trained 
over a limited operating range, corresponding to the 
unit’s normal loading range. In order to capture global 
(non-linear) behaviour, neural strategies were 
proposed, with the inner mapping between the t and u 
scores for each component replaced by a RBF network 
‘curve fit’. Subsequently, reduced order models were 
developed covering the operational unit range. 
 
Future work will focus on applying PLS techniques to 
the two CCGTs within the power station. The ability of 
the multi-shaft CCGT to operate in several 
configurations will impact on operational procedures, 

and unit performance. Furthermore, in addition to the 
factors raised in Section 3, CCGT operation is 
particularly sensitive to variation in ambient conditions 
– a 5° C change in air temperature or a 25 mbar 
variation in atmospheric pressure will typically cause a 
3% variation in maximum power output (Lalor and 
O’Malley, 2003). However, even measuring ambient 
temperature is not necessarily straightforward as sunny 
conditions can cause large fluctuations in measured 
values – multiple sensors are currently employed. 
Performance targets are thus likely to be more dynamic 
than for the conventional boiler plant.  
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