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Abstract: In this paper we discuss a generalization of the extended Luenberger
observer for multi-output systems. Our approach can be interpreted as approxi-
mate error linearization. While the extended Luenberger observer results from a
first order approximation of exact error dynamics, this paper provides an explicit
formula for a second order approximation. The design procedure is formulated in
terms of Lie derivatives and Lie brackets. Copyright© 2005 IFAC.
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1. INTRODUCTION

We consider observer design for nonlinear multi-
output systems

T = f(w)a Y= h(ZB), (1)
where x denotes the state and y the measured
output. One approach to observer design is to
find a nonlinear change of coordinates which
transforms (1) into a system with linear output
map and linear dynamics driven by a nonlinear
output injection. For a system in this so-called
nonlinear observer canonical form, observer de-
sign is a straightforward task. The resulting er-
ror dynamics are linear in the transformed coor-
dinates (Krener and Respondek, 1985; Xia and
Gao, 1988; Xia and Gao, 1989). This approach
is often called observer error linearization. The
concept has been extended to adaptive systems
(Marino and Tomei, 1995).

However, the conditions of the error lineariz-
ability are rather restrictive. Even if a system
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is error linearizable, it is extremely difficult to
compute the associated coordinate transforma-
tion since it requires the symbolic solution of
certain differential equations. Although alterna-
tive computation methods have been developed
in (Keller, 1987; Phelps, 1991), it is still difficult
to obtain a symbolic solution.

In recent years the problem of an approximate
observer error linearization attracted some at-
tention. For example, the coordinate transfor-
mation can be approximated by polynomials
using Poincaré’s normal form theory (Krener
et al., 1991). Similarly, one could also employ
splines (Lynch and Bortoff, 1997; Lynch and
Bortoff, 2001). Other approaches can be found in
(Banaszuk and Sluis, 1997; Nam, 1997).

A completely different way to bypass the symbolic
solution of any differential equations is the use
of the extended Luenberger observer (Bestle and
Zeitz, 1983; Zeitz, 1987; Birk and Zeitz, 1988).
This observer consists of a simulation part and
an injected difference of measured and estimated
output weighted by a state-dependent observer



gain. The observer gain is determined by Taylor
linearization of the error dynamics in transformed
coordinates. The extended Luenberger observer
can be considered as a first order approximation
of exact observer error linearization.

A generalization of the extended Luenberger
observer has been proposed in (Rdbenack and
Lynch, 2004), where a sequence of observer gains
is constructed to successively remove nonlinear
terms in the error dynamics. These gain vectors
can be computed by means of Lie derivatives and
Lie brackets, i.e., without an explicit symbolic
solution of differential equations.

In this contribution, we will extend the work in
(Robenack and Lynch, 2004) to multi-output sys-
tems. For a first order approximation, the gain
matrix that can be calculated according to (Birk
and Zeitz, 1988). For higher order approxima-
tions, the observer gain becomes tensor-valued.
Therefore, we restrict ourselves to a second order
approximation of exact linear error dynamics.

2. NORMAL FORM OBSERVER DESIGN

Consider system (1) with smooth maps f : R —
R™ and h : R* — RP. Let £y € R™ be a vector
such that f(xg) = 0, h(xg) = 0. We assume
that there exists a smooth change of coordinates
z = T'(x) with the inverse map & = S(z) defined
in a neighbourhood of &y € R™ such that (1) can
be expressed in nonlinear observer canonical form

2=Az+ay), y=Cz (2)
with the smooth output injection c : RP — R™.

The matrices A € R*"™™ and C € RPX™ are
block diagonal matrices A = diag (41,...,4p),

C = diag (Ch,...,C}), where each pair
0---00
1400

A= .. . .| eRexr
0---10

Ci= (0---01) eR™

is in dual Brunovsky form. The synthesis of an
observer is straightforward. An observer of the
form

z=Azta)+Lly-9), §=Cz (3
with L € R®*P yields an observation error Z = z—
2 governed by the linear differential equation

3=(A-LO)x. (4)
The eigenvalues of A — LC' can be arbitrarily as-
signed. For a prescribed characteristic polynomial
p(A) =det(A\I — A+ LC)
= Hp N det()\I — A+ LZC,)
=

= H:;l (pio + + + Pir; 1 A E + A™)
(5)

of the error dynamics (4) we have to set
L = diag(Ll,...,Lp) € R with L; =
(pio; - - - > Pins—1)T € RF.

Estimates of & can be obtained by & = S(2).
However, it is often more convenient to implement

the observer in the original coordinates. With
%2 = T'(&)x one obtains the observer

& = f(@) + koo(@,y) , (6)
where ko, : R" X R? — R” is given by koo (2, y) =
(T'(2)) " (a(y) — e(h(&)) + L(y — h(&))). Be-
cause the design procedure is based on the nonlin-
ear observer canonical form (2), the observers (3)
and (6) are called normal form observers.

3. OBSERVER CANONICAL FORM

The observability matrix of (1) has the form
dh(x)
dLsh(x)
: (7)
AL} h(z)
Starting from the top we select the first linearly

independent rows of (7). This rows are sorted into
a so-called selection matrix

dhl (.7:)
AL ()

Ty(@)

P_‘l
ALY hy(x)
The positive integers ki, ..., kp are called observ-
ability indices (Nijmeijer, 1981). We say the sys-
tem (1) is observable if k1+- - -+, = n. Then, the
selection matrix (8) is regular. Next, we introduce

the cumulative indices vy = kK1, v2 = K1 + Ko,

.., Vp = K1 + -+- + Kp. Smooth vector fields
v1,...,0p : R* = R are called starting vectors
if

Q(w) ) U’l(w) = €y, 1<i< b, (9)
where e; denotes the jth unit vector. Sufficient
conditions for the existence of (2) are given by the
following theorem similar to (Krener and Respon-
dek, 1985). These conditions are used by the ob-
server design procedure. Necessary conditions are
given in (Xia and Gao, 1988; Xia and Gao, 1989).

Theorem 1. There exists a local diffeomorphism
z=T(x), x = S(z), T(xo) = 0 in a neighbour-
hood of g € R", transforming (1) into (2) if

C1 rank Q(xo) = n,
C2 [ad‘_fvi,ad’if'uj](w) =0for0<¢<k;—1,
nggﬁj_lalslajgpa



C3 dh(z) - (ad"; ‘v (), ... ,ad'i”fflvp(w)) =1

in some neighbourhood of xg.

Sketch of the proof. The linear system (9)
is solvable because of the rank condition CI,
i.e., there exists smooth vector fields vy,...,v,
that fulfill (9). From these starting vectors we
can compute the Lie brackets adt #vi with { =
0,...,6;—=1,¢=1,...,p. It can be shown that
these vector fields are linearly independent. Due
to the integrability condition C2 we can apply
the simultaneous rectification theorem (Nijmeijer
and van der Schaft, 1990, Theorem 2.36). More
precisely, in a neighbourhood of x( there exists a
local diffeomorphism z = T'(x) such that

B 0
afo-‘rl-‘rlli—1
for=0,...,6;,—1,i=1,...,p. Careful calcula-
tion reveals that in this coordinate system the Ja-
cobian matrix of the vector field f from (1) has the

following structure (Krener and Respondek, 1985,
Theorem 5.1):

T'(x) ade_ffui(m) (10)

0 0 = * *
1 Dok * *
0 = * %

0 1 % * %
* |0 0 =* *

x| 1 Do *

* 0 = %

* 10 1 *

% * 0 -+ 0 =

* * 1 *

* * 0 %

* * 0 1 x

From this we conclude that in these coordinates
the vector field has the form described in (2).

Using the inverse map & = S(z) of z = T'(z) we
can rewrite (10) as

0
¢ v =8(z) 7/ . (11
ad*f'u (w)|m:S(z) 2 OZtt1tvis (11)
If we collect the vector fields (11) for £ =
0,...,6—1land i=1,...,p we obtain
§'(z) = (@) p—s(z) (12)
with

I = (vy, ...,ad'jlfflvl, ey Up, ...,adipfflvp). (13)

Now, we will consider the output map under the
action of the diffeomorphism constructed above.
In z-coordinates, the Jacobian matrix of h has
the form

Oh(S(z)) _ Oh(z)
0z Oz
Eq. (9) can be written as
0for £=0,...,6;— 2,
(dL?hi(w),vi(w)) - { 1 for £ =k; — 1.

This implies

S'(z) =h'(x)I(x) . (14)

0for £=0,...,8; —2,
(ahs(@).ad goste) = { T r 2

Hence, the Jacobian matrix (14) has the form

0 0 1|0 0 0 0 =
0 %10 0 0 %
0 0 %10 0 = 0 01

with p non-zero columns. These non-zero
columns can be expressed by dh(x)
(ad’ilfflvl(w), e ad'i”f_lvp(w)). This matrix
is the p x p identity matrix by condition C3.
Therefore, the Jacobian matrix (14) has the
form %{;ﬂzﬂl = (. Since this Jacobian matrix is
constant, the output map is linear with y = Cz
asin (2). O

In principle, the change of coordinates can be
obtained as follows: The computation of the se-
lection matrix (8) is straight forward. Due to C1
we can compute the starting vectors vy,...,v,
from the linear system (9). Eq. (12) is solvable
due to C2. Solving (12) yields S, inverting S
results in T. However, it is very difficult to ob-
tain a symbolic solution of (12) since it requires
the flows of the vector fields occurring in (13),
see (Nijmeijer and van der Schaft, 1990, Theo-
rem 2.36). Condition C3 holds if k1 = -+ = kp.
Otherwise, condition C3 can always be ensured by
an appropriate output transformation.

4. EXTENDED LUENBERGER OBSERVER

One interesting approach to avoid the symbolic
solution of (12) has been proposed in (Bestle and
Zeitz, 1983; Zeitz, 1987; Birk and Zeitz, 1988).
The observer

z=f(&)+ Z kii(2)(y: —9:), ¥ =h(&) (15)

with the vectors fields k11,..., k1, : R®* = R” has
the classical Luenberger structure. Assume that
the conditions of Theorem 1 are fulfilled. Then
there exists a transformation of (1) into observer
canonical form (2). We apply this transformation
to (15) and obtain

2= A2+ a(j)
+(8"(2)) 7! > Fu(S(2)) (i — i) -



The observation error 2 = z — 2 is governed by

A~

2= Az +a(y) - a)
)7 Y kus@n 10

with y = y — y. Without the knowledge of the
transformation, the term a(y) must be regarded
as unknown even though we have y = Cz. We
expand a(y) along the reference output curve g
of the observer, i.e.,

o=+ e

Applying this first order series expansion to (16)
results in the linearized error equation

2= 43 ((96) " k@) - p-al@)) Ciz
+o(lZI),
a7

where C; denotes the ith row of the matrix C. Let
L; € R" denote the ith column of L. If we set

SELi+ S ga®), (9)

9) i +o(llgll) -

ki(2) =

the linearized error dynamics (17) becomes

L4 E_Zi.é-zw(lléll) (19)
—(A— LC) +o(2]) -

This is a first order approximation of exactly
linear error dynamics (4).

Now, we want to express the observer gain (18) in
x-coordinates. Due to (12) and (13) we obtain

S,(z)ffi = piovi (&) + - -

where pjo, . .., Dix; are the coefficients of the char-
acteristic polynomial (5). Further (but rather
lengthy) calculations show that

0
99
We finally obtain

p“ad vi(&
Z ;

see (Birk and Zeitz, 1988). Eq. (21) can be re-
garded as a generalization of Ackermann’s formula
for nonlinear multi-output systems (Ackermann,
1977). Since the observer gain is computed by an
extended Taylor linearization technique, the ob-
server (15) is called extended Luenberger observer.

+ Dir; ad’iif_lvi(ﬁ:) ’

S'(%)~—a(y) = ad®0i(&) . (20)

k(@) ) with pie, :=1, (21)

If we put the vector fields kii,...,k1, into a
n x p matrix K;(&) = (k11(2),...,k1p(Z)), the
observer (15) can be written as

2 = f(&) + K1 (&)(y — h(2)). (22)

5. SECOND ORDER APPROXIMATION

The extended Luenberger observer is based on a
first order approximation of linear error dynam-
ics. To achieve a second order approximation we
consider an observer of the form

Z) + Z k1i(2)(y: — 9i)

p P (23)
+Y D ki (@) (i — 9 (y; — )
i=1 j=1
with additional vector fields kai1, k212, ..., Kopp ¢

R™ — R™. The error dynamics is governed by
z=Az+ay) - a(.@)

—(8'(2) ‘IZk“
M CAC) Zka,

i=1 j=1

(24)

A second order series expansion of the output
injection yields

aly) = o) + Z (fyia(.@) i
+212126 (@) §ig; + olllFl?) -
Choosing zk:li ]according to (18) results in
(A LC)~
+ ; JZ1 (é 3y,8y] a®) (25)

= (') kaig (@) G + o(1FIP)-

The second order terms occurring in (25) vanish
if and only if

kay(@) = 55'(G) giali) - (26)

In this case, Eq. (25) becomes z = (4 — LC) 2 +
o(||z]|?), where we obtain a second order approx-
imation of exactly linear error dynamics (4).

We want to express the observer gain (26) in -
coordinates. From (12) and (13) we conclude

0 i
B2y, S(z) = ad™; Loi(z) . (27)
Eq. (20) can be rewritten as
0 i
S'(z)azw a(Cz) = ad™;v;(x) (28)

because y = Cz = (2uy,---,
ing (28) w.r.t. z,, yields

0 , 0
0zy, (S (2) 0z,
2

=8"(2)5——

2y,)". Differentiat-

a(Cz))

20,02, a(Cz) (29)

+ ( afyj S’(z)> 6fwa(Cz) .




according to the product rule. The left hand side
of (29) results in

) N
0z, (S (Z)Bz,,i «

From (27) we conclude

0 o,,_ 0 0
@S (2) = 0zy; azs(z)
0 0
T oz 0zy, 5(z)
0 ,iJ
= % ad’™” J(w) eeS(2)
= aadijf_lv](a:) S'(z) .
Together with (28) we get
0
(525®) 5 agﬂa(@z)
= (—ad_f ’U] ) SI CZ)
= (—ad_f v;(x ) -S'(z dm_f’”z( )

= (%ad”’fl'u]( )) -ad" vi(z)
(31)

Putting (29), (30) and (31) together, we finally
obtain

() 50— —a(C3)

U

afu ( z)>
B (azuj g (z)) 3»(3,/, (Cz)

= (%ad“"fvi(m)) cad™; v;(x)
_ (;ad_f i@ )) - ad®,v;(x)

= [ad™; f U],ad'i"fvi](a:) .

Therefore, the observer gain (26) can be written
as

A ]- Nj—l Ki A
koij (&) = §[ad_f vj,ad”v;](2) - (32)
If we arrange the p? vector fields
k2i1,...,kopp into a n x p? matrix Ky(&) =
(k211(2), . .., ko1p(B), - - -, kap1 (£), - - -, kapp(2)),
the observer (23) can be written as
@ = f(&)+ Ki(&)(y — h(@)) (33)

+ Kx(2) (y — h(2)) ® (y — h(2))),
where ® denotes the Kronecker tensor product.

6. EXAMPLE

Consider the hyperchaotic Rossler system
—To — T3

z1 + 0.2529 + 24
3 + x123

—0.5z3 + 0.05z4

&= f(z) = (34)

with the output

v=n@ = (122 ) .

see (Rossler, 1979; Peng et al., 1996; Morgiil,
1999). This system has the observability indices
k1 = kg = 2. The selection matrix (8) given by

01 0 O
1025 O 1
Q(m) = 0 0 T —1 0
1 0 -3z3'0

is regular provided xz3 > 0. From (9) and (13) we
get the matrix

00 1 0
01 0 0
M@ =100 0 (35)

10.05 -1 —-0.05

For the extended Luenberger observer (15) we
obtain the gain vectors

-1
ki1 (z) = pu1 —(I)—0.3
P10 + 0.05p11 + 0.0025
and
p200—0§3
brz(@) = P21232T3 — 3
—p20 — 0.05p21 — 0.523 — 0.0025

For the second order approximation discussed in
Sect. 5, Eq. (32) yields

—0.5.733

0

k(@)= |
—0.25.’1!3

and k2;;(z) = (0,0,0,0)7 otherwise.

For this example we can also solve (12) with (35)
symbolically. The transformation T has the fol-
lowing form:

z1 — 0.0522 + 24 + 0.051n 23
Z2
T
In I3

T(x) =

Based on this change of coordinates one can
compute (6) with the output injection
—1.0125y; — 1.5e¥2 +0.15e7¥2
0.3y1 - 0053/2
—yp —e¥?
3e 2

a(y) =



The numerical simulation was carried out with
the CACSD package Scilab (Gomez, 1999). All
observer eigenvalues were placed at —3. We used
the initial values xz(0) = (—20,0,1,15)T and
£(0) = (0,0,1,0)T. Fig. 1 shows the Euclidean
norm of the observation error &(t) = x(t) — &(¢).
It can be seen that the new observer (23) based
on a second order approximation converges faster
than the extended Luenberger observer (15).

2
10

Extended Luenberger
Observer

-8 Norm Form
10 7  Observer

10 1 New Observer
-14 (Second Order Approx.)

Time t

Fig. 1. Norm of the observation error

7. SUMMARY

We discussed an approximation of the normal
form observer. Our approach can be considered
as a generalization of the extended Luenberger
observer. The computation of the observer gain
involves derivatives and matrix inversion. The
method proposed here can easily be extended to
systems with inputs.
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