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Abstract: This paper concerns the control of a solar energy collector field using predictive 
feedforward adaptive control techniques based on multiple identifiers. The ACUREX 
field used in these work is described by a partial differential equation (PDE). The plant is 
characterized by: non linearity, fast accessible disturbances and time varying dynamics. 
The dynamic dependency on flow is overcome by time-scaling. The result of this 
transformation is a discrete linear model with a Finite Impulse Response (FIR) transfer 
function. This means that the optimal predictive controller is given by a feedforward 
block. Simulation results on a detailed plant physical model are presented in order to 
illustrate the method. Copyright ©2005 IFAC. 
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1. INTRODUCTION 
This paper concerns the control of a solar energy 
collector field and extends the work presented in 
(Coito et al., 1997) using predictive adaptive control 
techniques based on multiple identifiers by using 
time varying sampling. 
The ACUREX field used in these work is described 
in the available literature (Camacho et al., 1992; 
Camacho et al., 1988). In this plant the main sources 
of disturbances are measured and its dynamic 
behaviour depends strongly on its geometry 
(available). This allows us to derive an accurate 
model which is described by a partial differential 
equation (PDE). The plant is characterized by: non 
linearity caused by the dependency of bandwidth and 
static gain with flow (the manipulated variable); fast 
accessible disturbances (solar radiation with sudden 
clouds); time varying dynamics with the daily and 
annually cycles, and pluvial cycles that modify the 
reflectivity of the mirrors; and sudden plant changes 
when groups of collectors are entering/exiting solar 
track. 
Due to this strong non-linear behaviour, the use of 
predictive adaptive algorithms based on linear 
models is limited on the operating point rate of 
change. A best compromise between the tracking 

capabilities of the adaptive controller and its 
sensitivity to disturbances should be find resulting in 
a sub-optimal solution. 
With the objective of overcoming this tie, a time 
scaling transformation in the discretization procedure 
was proposed in (Silva, 1999) and further exploited 
in (Silva and Lemos, 2001; Silva et al. 2003a; Silva 
et al. 2003b). Since the controller is to be 
implemented in a digital computer, the dynamic 
dependency on flow can be overcome by time-
scaling, replacing the elements of time (sampling 
period) by elements of volume. The result of this 
transformation is a discrete linear model (the 
variable sampling period dependent on the imposed 
flow) with a Finite Impulse Response (FIR) transfer 
function. This means that the optimal predictive 
controller is given by a feedforward block with the 
inputs: setpoint value, accessible disturbances and 
past control actions, i.e. there is no dependency on 
the plant output. 
The work presented in this paper exploits the 
Feedforward version of the MUSMAR algorithm 
together with time-scaling methods in the control of 
a plant with transport phenomena. Plants, such as 
rolling mills, conveyor belts or fluids in pipes can be 
transformed with time-scaling (Aström and 



Wittenmark, 1984). Plants of this class may be 
controlled with advantage using the method reported 
here. The paper is organized as follows. In section 2 
the plant and the discretization of its the non linear 
model is described. Section 3 describes the time-
scaled discretization procedure. The convergence 
properties of the proposed controller are presented in 
Section 4. In section 5 some simulation results on the 
full-scale plant model are shown and some 
conclusions are drawn in section 6.  

2. PLANT DESCRIPTION AND MODEL 

The ACUREX field of the Plataforma Solar de 
Almería (PSA) in Southern Spain, consists of 480 
distributed solar collectors. They are arranged in 10 
loops along an east-west axis (fig. 1). The collector 
has a reflective cylindrical parabolic surface in order 
to concentrate the incident solar radiation on a pipe 
located on the surface focal line. A heat transfer fluid 
(oil) is pumped from the bottom of a storage tank 
through the collectors, where it collects solar energy, 
and from the output of the field, again to the top of 
the tank. By manipulating the oil flow, with the 
pump, it is possible to control the output temperature 
of the oil. values of an array of 10 temperature 
sensors located at the output of each loop. Due to 
safety reasons the oil flow is limited between 2.0 and 
10.0 liters per second. The heated oil from the 
collector field stored in the tank can be used e.g. for 
the production of electrical energy or for the 
operation of a desalination plant. The field is 
equipped with a tracking system by which the 
mirrors can rotate parallel to the axis of the receiving 
tube in order to follow the sun in height throughout 
the day. There is a temperature sensor located at the 
input of the field, measuring the temperature of the 
oil entering the active part (mirrors). It is also 
available a 2 d.o.f. solar radiation sensor that is able 
to follow the sun, measuring the total incident 
radiation. With an algorithm using the actual day and 
time it is possible to compute the corrected radiation 
(i.e. the effective radiation heating the oil) from that 
measure.  

 
Fig.1 ACUREX Solar collector field. 
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Fig.2 Process schematic. 

The focus of the modelling work has been put into 
the transport effect since this is the most relevant 
part for the dynamics. Other thermal mechanisms, 
such has e.g. thermal diffusion, have been neglected 
in the model presented next (Pickhardt and Silva, 
1998). The model is nonlinear, yet, it is given by a 
simple formula with only two parameters that relates 
the output temperature outT , with the input 

temperature inT , and the solar radiation R : 

( ) ( ) ( ) σστ
τ

dRtTtT
t

tinout ∫ −
Γ+−⋅Ψ=  (1) 

The parameter ( ) ( )fo ASD ρη=Γ  where D  is 

the mirrors width, oη  is the optical efficiency, A  is 

the transversal pipe section area, fS is the specific 

thermal capacity of the oil and ρ  is the oil density 
approximated by a constant) has been estimated 
using real plant data and the same was made for the 
parameter Ψ  that takes into account the losses 
inside the collector. The input-output travelling time, 
τ , is obtained from  

( ) VdF
t

t
=∫ −

σσ
τ

 (2) 

where ( )⋅F is the volumetric flow inside the 

collector and V is the total collector volume.  

3. TIME SCALED DISCRETIZATION 

The controller developed in this work results from 
the minimization of a quadratic cost over an 
extended horizon based on the model described in 
the previous section after time scaled discretization. 
Consider again equations (1) and (2) and use 
elementary volumes instead of elementary time 
intervals (sampling period) on a discretization 
procedure. Thus, let us divide de collector volume 
V in n  smaller equal volumes v  and consider a 
zero order hold (ZOH) for the flow command since 
the controller will be implemented in a digital 
computer.  
 



 
Fig.3 Relation between flow and sampling periods. 
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Fig.4 Active part volume division. 

Choose the sampling period ST  for each discrete 

time instant, k ,such that the product of the flow 
value by the sampling period results in the 
elementary volume (fig. 4) i.e. 

n
V

vkTkF S ==× )()(  (3) 

Then, equation (3) implies that 

( ) k

n

i
S ikT τ=−∑

=1

 (4) 

where kτ  stands for the I/O transport delay (through 

volume V ), in seconds, for the fluid element that is 
present at time instant k  at the output. The discrete 
time radiation signal can be computed from the 
continuous one with a forward average at time k  as 

( )∫
+

=
1
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Then, equation (1) becomes, in a discrete version, 

( ) ( ) ∑
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1
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k

nki
Sinout iTiRnkTkT   

 (6) 
Defining 1)()( −= kFku  as the new control variable, 
from (3) and (6) we get 

( ) ( ) ∑
−

−=

+−⋅Ψ=
1

)()(
k

nki
inout iuiRnkTkT α   

 (7) 
where v×Γ=α . Equation (7) is a non-recursive 
discrete linear system (entirely feedforward) with 
time varying coefficients depending on the radiation 
signal. 

4. THE FEEDFORWARD MUSMAR ADAPTIVE 
PREDICTIVE CONTROLLER 

The MUSMAR controller [Greco et al., 84, Mosca, 
95] is based on a number of separately estimated 
predictive models. In the presence of plant/model 
mismatches, such as the situations found here, the 
redundancy thereby introduced proves important for 
achieving a correct control action [Mosca et al., 89]. 
This multiple model approach is a distinctive feature 
with respect to other approaches to predictive 
adaptive control, relying on the adaptation of a single 
model from which others are then obtained. In 
[Greco et al., 84] it is shown that MUSMAR is 
equivalent to a bank of parallel self-tuners, each one 
tuned to a different value of plant delay and with 
different weights. If the actual plant delay is bigger 
than the delay assumed for a given self-tuning 
channel the corresponding weight will be zero. 
Insensitivity to uncertainty in plant delay is thus 
achieved up to some degree. 

FF-MUSMAR algorithm 

The MUSMAR algorithm reads as follows:  
At the beginning of each sampling interval k  
(discrete time), recursively perform the following 
steps:  

1. Sample plant output, )(ky and compute the 

tracking error y~ , with respect to the desired setpoint 

)(kr by: 

)()()(~ kykrky −=  (8) 

2. Using Recursive Least Squares (RLS), update the 
estimates of the parameters jθ , jψ , 1−jµ  and 1−jφ  

the following set of predictive models: 

)()()(~ kskujky T
jj ψθ +≈+  (9) 

Nj

kskujku T
jj

L1

)()()1( 11

=

+≈−+ −− φµ
 (10) 

where ≈ denotes equality in least squares sense and 
)(ks is a sufficient statistic for computing the 

control, hereafter referred as the pseudo-state, given 
by 

[ ]T
wB nkwkwnkukuks )()()()1()( −−−= LL  

 (11) 

where the )(kw  are samples from accessible 
disturbances in order to provide the feedforward 
action. Since, at time k , )(~ jky +  and )( jku +  

are not available for 1≥j , for the purpose of 
estimating the parameters, the variables in (9,10) are 



delayed in block of N samples. The estimation 
equations are thus, 

[ ])(1)()1()(1
)()1(

)(
kNkkPNk

NkkP
kK

T βϕϕ
ϕ

−−−−+
−−

=  

 (12) 
( )[ ] )1()(1)()()( −−−−= kPkNkkKIkP T βϕ  

 (13) 
and 

)()()1(ˆ)(ˆ kkKkk jjj ε+−Θ=Θ  

)()(ˆ)(~)( NkNkjNkyk T
j j

−−Θ−+−= ϕε  (14) 

with Nj L1= ; and for 11 −= Nj L  

)()()1(ˆ)(ˆ kkKkk jjj δ+−Ω=Ω  

)()(ˆ)()( NkNkjNkuk T
j j

−−Ω−+−= ϕδ  (15) 

In these equations, jΘ̂  represents the estimate of the 

parameter vector of the output predictors, given at 
each discrete time and for each predictor j  by 

[ ]TT
jjj ψθ=Θ̂  

and ( )Nk −ϕ  represents the regressor, common to 
all predictors, given by 

[ ]TT NksNkuNk )()()( −−=−ϕ  

Similarly, jΩ̂  represents the estimate of the 

parameter vector of the input predictors, given at 
each discrete time and for each predictor j  by 

[ ]TT
jjj φµ=Ω̂  

Note that, since the regressor ( )Nk −ϕ  is common 
to all the predictive models, the Kalman gain update 
(12) and the covariance matrix update (13) are also 
common to all the predictors and need to be 
performed only once per time iteration. This greatly 
reduces the computational load.  

3. Apply to the plant the control given by 
 

)()()( kksfku T η+=  (16) 

where η is a white dither noise of small amplitude 

and f  is the vector of controller gains, computed 
from the estimates of the predictive models by 
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with the normalization factor a  given by 
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4. CONVERGENCE PROPERTIES OF THE 
FEEDFORWARD MUSMAR 

Consider a plant described by the following 
ARMAX with accessible disturbance model 

)()()()()()()()( kwqDteqCtuqBkyqA ++=  (19) 
where q is the forward shift operator, y  is the plant 
output, u is the plant input (manipulated variable), 
{ })(ke  is a sequence of independent, identically 
distributed (i.i.d.) random variables with zero mean 
and finite variance and { })(kw is an accessible 
disturbance modelled by a sequence of i.i.d. random 
variables independent of { })(ke  and such that 

{ } 2)()( wkwkwE σδτ τ=+ , where τδ  is Kronecker 

symbol. In the special case where )(qA  is Hurwitz, 

the vector gain f  of the reduced complexity 
feedforward controller 

)()( ksfku T=  (20) 
is to be adjusted such as to minimize the steady-state 
quadratic cost 

{ })()(~lim)( 22 kukyEfJ
k

ρ+=
∞→

 (21) 

In the presence of the controller (20) written in the 
form of a rational transfer function 

)()()()( kwqMkuqT −=  (22) 
the optimal feedforward controller is characterized 
as follows. Replacing (22) in (19) yields ( 0)( =ke ) 

)(
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ky 






 −
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Following the same approach as in (Mosca et al, 
1989) it can be shown that 
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where for 
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the gradient (24) of the output ),( fky  with respect 

to f  is given by 
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being (25) defined in an analogous way. 
The minimization of (21) gives 
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and replacing (24) and (25) yields 
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In order to compute the equilibrium gain yielded by 
Feedforward MUSMAR, the approximation is made 
of assuming that the plant is being controlled since 
the remote past and from ki =  up to 1−+ Nk  by 
a control law of the form 

)()()( 0 iisfiu T η+=  (29) 

where 0f  is a stabilizing constant vector gain and 

{ })(iη  is a low power dither noise independent of 

{ })(is  and such that 
{ }

{ } 2)()(

0)(

ησδηη

η

jjiiE

iE

=+

=  (30) 

Due to the assumptions made, the output of the plant 
admits least-squares predictors of the form (19,20). 
The Feedforward MUMAR algorithm is analysed 
using the ODE method (Mosca et al, 1989). The 
following set of ODEs can be associated with the 
FF-MUMAR 
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{ } )()()()( ττ z
T

z RkzkzER −=&  (33) 
 

where [ ]TT kskukz )()()( =  and (.) denotes the 
derivative operator with respect to τ . 
Replacing the control input of (27) in the equations 
(31,33) and since { } 0)()( =kskE η , at equilibrium 
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Again from equations (31,33), it is possible to write, 
at equilibrium, the following equation 
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The second and (by (17)) the third terms are null 
implying for the first term (after reordering) 
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If 
N

qH )(  represents the )(qH  filter truncated to 

its first N  impulse response samples, from (34,35), 
at equilibrium 
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 (38) 
Comparing this solution with (28) it is concluded 
that when ∞→N  the equilibrium gain yielded by 
the FF-MUSMAR approaches the optimal solution 
defined by (28) when ∞→k . 
Additionally, it is possible to show (see Mosca et al, 
1989) that the ODE correspondent to )(τf  can be 
written as 

( )*1 )(
1

ffofJRf Ns −+∇
α

−= −&  (39) 

where *f  denotes any equilibrium point, 

{ })()( ksksER T
s =  and ( )xo  is such that 

( ) 0lim
0

=
→

xxo
x

. 

This means that if N  is large enough, close to the 
equilibrium, FF-MUSMAR updates the controller 
vector gain according to the gradient of the cost 
function. 

5. SIMULATION RESULTS WITH THE SOLAR 
FIELD 

The following simulations were performed using the 
model from equations (1,2) with 10=n . For a total 
volume of 1800 litters, this gives a value of the 
elementary volume lv 180= .  
The simulation was performed with the following 
parameters: 

10=N  01.0=ρ  985.0=λ  22 102 −×=ησ  

3=Bn  1=Rn  2=Wn  310)0( =P  

where Rn  is the number o reference terms in the 
pseudo-state, making an additional feedforward 
action from the set-point changes, which are also 
disturbances on the system. 
The simulation starts with zero knowledge in the 
predictor models and the controller is purely 
feedforward since there is no feedback term in the 
pseudo-state )(ks . For simulation purpose the time 
is represented in hours in order to establish the 
radiation curve around solar noon. Additionally, two 
variations were performed on the inlet temperature 
value. Figure 5 show the output temperature and 



reference value and manipulated flow. The radiation 
and the input temperature are depicted in figure 6. In 
figure 7 the FF-MUSMAR vector gain is represented. 
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6. CONCLUSIONS 

This paper shows how MUSMAR, a predictive 
adaptive control algorithm based on multiple 
identifiers in its feedforward version, can be used to 
tackle a problem that arises from the time-scaled 
discretization of a distributed parameter system. The 
Finite Impulse Response structure of the plant model 
after discretization results in controller purely 
feedforward, the uncertainty being compensated by 
the adaptive nature of the control algorithm.  
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