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Abstract: In the standard approach of control by interconnection the plant and the con-
troller are assumed to be passive and coupled via a power–preserving interconnection—
generating an overall passive system with storage function the sum of the plant and
controller storage functions. To achieve stabilization of a desired equilibrium one must
make this point a minimum of the new storage function. Towards this end, dynamic
invariants—called Casimirs—are first computed. Restricting the dynamics to the level
sets of the Casimirs, the overall storage function becomes a bona fide function of the
plant states and the storage function can be shaped. Unfortunately, this procedure is
applicable only if one fixes the initial conditions of the controller to some specific values.
To remove this drawback we propose in this paper to carry out the stability analysis in
the full plant and controller state spaces. The new storage function is then the sum of
the plant and the controller Hamiltonians and an arbitrary functions of the corresponding
Casimir functions. We also provide some examples which illustrate the possibilities and
limitations of the new method. Copyright c©2005 IFAC
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1. INTRODUCTION

Port Controlled Hamiltonian (PCH) models are natu-
ral candidates to describe many physical systems (van
der Schaft, 2000). Basically, PCH systems are systems
defined with respect to a power–conserving geomet-
ric structure capturing the basic interconnection laws,
and a Hamiltonian function given by the total stored
energy of the system. A very important property of
PCH systems, which may be directly inferred from the

? This work has been partially supported by CONACYT (Mexico)
and the European sponsored project GeoPlex IST-2001-34166, for
more information see http://www.geoplex.cc

structure matrix, is the existence of dynamical invari-
ants independent of the Hamiltonian called Casimir
functions, the existence of which has an immediate
consequence on stability analysis.

In this paper we are interested in stabilization of
equilibria via Control by Interconnection (van der
Schaft, 2000; Ortega et al., 2001), whose central
component is the generation of Casimir functions. In
the standard approach the plant and the controller
are PCH systems coupled via a power–preserving
interconnection—generating an overall PCH system
with storage function the sum of the plant and con-
troller storage functions. To achieve stabilization one



must make the desired equilibrium a minimum of the
new storage function. Restricting the dynamics to the
level sets of the Casimirs, the overall storage function
becomes a bona fide function of the plant states and
the storage function can be shaped. Unfortunately, this
procedure is applicable only if one fixes the initial
conditions of the controller to some specific values.

To remove this drawback in this paper we propose not
to restrict the dynamics to the Casimir level sets, but
to carry out the stability analysis in the full plant and
controller state spaces. The new storage function, de-
fined in the full state space, is then the sum of the plant
and the controller Hamiltonians and an arbitrary func-
tion of the corresponding Casimir functions. Although
we get nice results for some electrical systems and
“fully actuated” mechanical systems, in the case of
electromechanical systems (an also for some electrical
systems) we see that due to the dissipation obstacle we
cannot assign the desired equilibrium point.

2. CONTROL BY INTERCONNECTION:
GENERAL THEORY

Control by Interconnection is a controller design pro-
cedure to stabilize the equilibria of passive systems
via passive controllers (van der Schaft, 2000; Ortega
et al., 2001). 1 In this paper we are interested in PCH
systems of the form











ẋ = [J(x)−R(x)]
∂H

∂x
+ g(x)u

y = g>(x)
∂H

∂x

(1)

where x ∈ X is the state vector, u ∈ R
m , m < n

is the control action, H : X → R is the total stored
energy, and J(x) = −J>(x), R(x) = R>(x) ≥ 0
are the natural interconnection and damping matrices,
respectively.

The controller is also a PCH system of the form










ξ̇ = [Jc(ξ)−Rc(ξ)]
∂Hc

∂ξ
+ gc(ξ)uc

yc = g>c (ξ)
∂Hc

∂ξ

(2)

with state ξ ∈ Xc, input uc ∈ R
p, Jc(ξ) = −J>

c (ξ),
Rc(ξ) = R>(ξ) ≥ 0, and Hc : Xc → R the energy of
the controller.

Interconnecting plant (1) and controller (2) via the
standard (power preserving) feedback interconnec-
tion 2

u = −yc, uc = y (3)

1 As indicated in (Ortega et al., 2001) the procedure is actually
applicable for a larger class of plants and controllers, namely, those
satisfying the energy balance equation—that may be even unstable.
2 We present here the simplest case of unitary feedback, but the
results carry through for other more general power preserving
interconnections.
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Fig. 1. Invariant subspaces.

we get that the composed system is still PCH and can
be written as

[

ẋ

ξ̇

]

= [Jcl(x, ξ)−Rcl(x, ξ)]







∂H

∂x
(x)

∂Hc

∂ξ
(ξ)






(4)

[

y

yc

]

=

[

g(x) 0
0 gc(ξ)

]







∂H

∂x
(x)

∂Hc

∂ξ
(ξ)







with state space the product space X × X c,, the total
Hamiltonian Hcl(x, ξ) = H(x) + Hc(ξ) and the
matrices Jcl(x, ξ), Rcl(x, ξ) defined as

Jcl(x, ξ) =

[

J(x) −g(x)g>c (ξ)

gc(ξ)g
>(x) Jc(ξ)

]

(5)

Rcl(x, ξ) =

[

R(x) 0
0 Rc(ξ)

]

(6)

To achieve the stabilization objective we shape the en-
ergy function Hcl(x, ξ) to assign a minimum at the de-
sired equilibrium point x?. For, we restrict the motion
of the closed–loop system to a certain subspace of the
extended state space (x, ξ) by rendering it invariant
(see Fig. 1). 3 Consider, for instance, the subspace

Ω = {(x, ξ)|C(x, ξ) = 0}

where C(x, ξ) = ξ − F (x). The closed–loop total en-
ergy restricted to the level sets of Ω becomes H(x) +
Hc(F (x)+c), c ∈ R. Now, given F (x), we can shape
this total energy function with a suitable selection of
the controller energy Hc(ξ).

It is clear that Ω is invariant if and only if

d

dt
C(x, ξ)

∣

∣

∣

∣

Ω

= 0, (7)

along the dynamics of the closed–loop system (4).
In the Control by Interconnection method we look
for Casimir functions, which are dynamic invariants
independent of the Hamiltonian function. That is, we

3 A set Ω ⊂ X × Xc is invariant if (x(0), ξ(0)) ∈ Ω ⇒

(x(t), ξ(t)) ∈ Ω ∀t ≥ 0



look for solutions of the partial differential equations
(PDEs)
[

−
∂>F

∂x

... Im

] [

J(x)−R(x) −g(x)g>c (ξ)

gc(ξ)g
>(x) Jc(ξ)−Rc(ξ)

]

= 0

(8)

As shown in (van der Schaft, 2000), the admissible
functions F (x) are characterized by the following
proposition.

Proposition 1. (van der Schaft, 2000) F (x) is a solu-
tion of the PDEs (8) if and only if

∂>F

∂x
(x)J(x)

∂F

∂x
(x) = Jc(ξ) (9)

R(x)
∂F

∂x
(x) = Rc(ξ) = 0 (10)

∂>F

∂x
(x)J(x) = gc(ξ)g

>(x) (11)

Notice that the function H(x)+Hc(F (x)+c) depends
on a constant vector c determined by the controller ini-
tial conditions. Although in analog controller design
this is natural, for more practical discrete–time imple-
mentations it is desirable to remove this restriction.
Removing this restriction is one of the main motiva-
tions of the present work.

Example 1. (van der Schaft, 2000) Consider the equa-
tions of a normalized pendulum

q̈ + sin q + dq̇ = u, (12)

with d a positive damping constant. The total energy
is given by H(q, p) = 1

2p
2+(1−cos q). The solution

of (8) are functions of the form F (q) = q. Let q? be a
desired position of the pendulum. The objective is to
shape the potential energy P (q) = 1 − cos q in such
a way that it has a minimum at q = q?. Choosing

Pc(ξ) = cos ξ +
1

2
(ξ − q?)

2

and substituting ξ = G(q) + c = q + c we get the
shaped potential energy as

Pd(q) = P (q) + Pc(G(q) + c)

= cos(q + c) + (1− cos q) +
1

2
(q + c− q?)

However, in order to obtain a minimum at q = q? the
controller needs to be initialized in such a way that
c = 0.

Remark 1. Equation (10) encodes the so–called “dis-
sipation obstacle” of this methodology (Ortega et
al., 2001), and it represents a necessary condition
for the existence of the Casimir functions, roughly
speaking, equation (10) says that the Casimirs cannot
depend on the coordinates where there is dissipation,
i.e. dissipation is admissible only on the coordinates
of the energy function that do not require shaping.

3. CASIMIRS IN THE EXTENDED STATE
SPACE.

In this section we propose a modification of the Con-
trol by Interconnection method to overcome the prob-
lem of controller initialization mentioned above. The
key idea is to analyze the closed-loop system (4) in the
extended state spaceX×Xc, with the control objective
of stabilization of a desired equilibrium (x?, ξ?), for
some ξ? satisfying the equilibrium equations of (4).
To this end, we consider general Casimir functions
C : X × Xc → Xc, which means that we are looking
for solutions of the PDEs
[

∂>C

∂x
(x, ξ)

∂>C

∂ξ
(x, ξ)

]

[Jcl(x, ξ)−Rcl(x, ξ)] = 0

(13)
where Jcl(x, ξ) and Rcl(x, ξ) are given by (5) and (6),
respectively.

Equivalently, (13) can be written as

∂>C

∂x
(x, ξ)[J(x)−R(x)]+

∂>C

∂ξ
(x, ξ)gc(ξ)g

>(x)= 0

∂>C

∂x
(x, ξ)g(x)g>c (ξ)−

∂>C

∂ξ
(x, ξ)[Jc(ξ)−Rc(ξ)]= 0

(14)

Post-multiplying first equation of (14) by ∂C
∂x

(x, ξ)

and second equation by ∂C
∂ξ

(x, ξ) yields

∂>C

∂x
(x, ξ)J(x)

∂C

∂x
(x, ξ)=

∂>C

∂ξ
(x, ξ)Jc(ξ)

∂C

∂ξ
(x, ξ)

(15)

−
∂>C

∂x
(x, ξ)R(x)

∂C

∂x
(x, ξ)=

∂>C

∂ξ
(x, ξ)Rc(ξ)

∂C

∂ξ
(x, ξ)

(16)
Since by assumption R(x) ≥ 0, Rc(ξ) ≥ 0, then (16)
implies

∂>C

∂x
(x, ξ)R(x)

∂C

∂x
(x, ξ) = 0,

∂>C

∂ξ
(x, ξ)Rc(ξ)

∂C

∂ξ
(x, ξ) = 0

The above equations are equivalent to

R(x)
∂C

∂x
(x, ξ) = Rc(ξ)

∂C

∂ξ
(x, ξ) = 0 (17)

Summarizing we have obtained:

Proposition 2. C(x, ξ) is solution of the PDEs (13)
(and thus are Casimir functions for the closed-loop
PCH system (2)) if and only if

∂>C

∂x
(x, ξ)J(x)

∂C

∂x
(x, ξ)=

∂>C

∂ξ
(x, ξ)Jc(ξ)

∂C

∂ξ
(x, ξ)

R(x)
∂C

∂x
(x, ξ) = Rc(ξ)

∂C

∂ξ
(x, ξ) = 0

∂>C

∂x
(x, ξ)J(x) = −

∂>C

∂ξ
gc(ξ)g

>(x)

∂>C

∂ξ
(x, ξ)Jc(ξ) =

∂>C

∂x
(x, ξ)g(x)g>c (ξ)

(18)



Proof. Only the last two equations need to be shown,
which are easily obtained by substituting (17) into
(14).

Remark 2. We see here again that the second equation
of (18) represents the “dissipation obstacle”, but to
overcome this is not in the scope of the theory studied
here.

Remark 3. We have considered the case in which we
wish to relate all controller state variables to the plant
state via Casimir functions C(x, ξ). As discussed in
(van der Schaft, 2000) other options are possible and
should be explored.

4. STABILITY ANALYSIS

Consider the plant (1) and the the PCH controller (2)
with power preserving interconnection (3). Suppose
that there exist Casimirs for the plant controller in-
terconnection satisfying (18). A Lyapunov function
candidate is built as the sum of the plant and controller
Hamiltonians and compositions of the Casimir func-
tions as

V (x, ξ) = H(x) +Hc(ξ) + Ψ(C(x, ξ)) (19)

where Ψ : Xc → R is an arbitrary C1 function. We
have

d

dt
V (x, ξ) =−

∂>H

∂x
(x)R(x)

∂>H

∂x
(x)

−
∂>Hc

∂ξ
(ξ)Rc(ξ)

∂>Hc

∂ξ
(ξ) ≤ 0

where we have used (13).

The next step is to shape the closed-loop energy in the
extended state space (x, ξ) in such a way that it has a
minimum at (x?, ξ?). Therefore V (x, ξ) should satisfy







∂

∂x
[H(x) + Ψ(C(x, ξ))] |(x?,ξ?)

∂

∂ξ
[Hc(ξ) + Ψ(C(x, ξ))] |(x?,ξ?)






= 0 (20)

and




∂2

∂x2
[H(x)+Ψ(C(x, ξ))]

∂2

∂ξ∂x
Ψ(C(x, ξ))]

∂2

∂x∂ξ
Ψ(C(x, ξ))]

∂2

∂ξ2
[Hc(ξ)+Ψ(C(x, ξ))]





∣

∣

∣

∣

∣

∣

(x?,ξ?)

≥ 0

(21)
Suppose that V (x, ξ) has a strict local minimum at
(x?, ξ?). Furthermore assume that the largest invariant
set under the dynamics (4) contained in

{(x, ξ) ∈ X × Xc|
∂>H

∂x
(x)R(x)

∂>H

∂x
(x) = 0,

∂>Hc

∂ξ
(ξ)Rc(ξ)

∂>Hc

∂ξ
(ξ) = 0}

equals (x?, ξ?). Then (x?, ξ?) is a locally asymptoti-
cally stable equilibrium of (1)

5. ILLUSTRATIVE EXAMPLES

In this section we illustrate with some examples the
application of Casimir functions in the extended state
space plant–controller to the Control by Interconnec-
tion methodology.

Example 2. Consider a mechanical system with damp-
ing and actuated by external forces u described as a
PCH system

[

q̇

ṗ

]

= (

[

0 Ik
−Ik 0

]

−

[

0 0
0 D(q)

]

)







∂H

∂q
∂H

∂p






+

[

0
B(q)

]

u

y = B>(q)
∂H

∂p
(22)

with x =

[

q

p

]

, where q ∈ R
k are the generalized

configuration coordinates, p ∈ R
k the generalized

momenta, and D(q) = D>(q) ≥ 0 is the damping
matrix. If D(q) > 0, then it is said that the system is
fully damped. The outputs y ∈ R

m are the generalized
velocities corresponding to the generalized external
forces u ∈ R

m. We consider the case where the
Hamiltonian H(q, p) takes the form

H(q, p) =
1

2
p>M−1(q)p+ P (q) (23)

where M(q) = M>(q) > 0 is the generalized inertia
matrix, 1

2p
>M−1(q)p = 1

2 q̇
>M(q)q̇ is the kinetic

energy, and P (q) is the potential energy of the system.

Consider now the PCH controller (2), then the equa-
tions (18) for C=(C1(x, ξ), ..., Cm(x, ξ))> take the
form

∂>C

∂p

∂C

∂q
−

∂>C

∂q

∂C

∂p
=

∂>C

∂ξ
Jc(ξ)

∂C

∂ξ

D(q)
∂C

∂p
= 0 = Rc(ξ)

∂C

∂ξ

∂>C

∂p
= 0, and

∂>C

∂q
= −

∂>C

∂ξ
gc(ξ)B

>(q)

or equivalently

∂>C

∂ξ
Jc=0,

∂C

∂p
=0,

∂>C

∂q
+

∂>C

∂ξ
gc(ξ)B(q)=0

(24)
Hence if we can solve the PDE in the above equation,
then the closed-loop port-Hamiltonian system with
Jc = 0 admits Casimirs Ci(x, ξ), i = 1, ...,m.

leading to a closed loop system





q̇

ṗ

ξ̇



 =





0 Ik 0

−Ik 0 −B(q)g>c (ξ)

0 gc(ξ)B
>(q) 0





















∂H

∂q

∂H

∂p

∂Hc

∂ξ

















y = B>(q)
∂H

∂x

yc = g>c (ξ)
∂Hc

∂ξ
(25)



If H(q, p) is given as in (23), then the candidate
Lyapunov function is built as

V (q, p, ξ) =
1

2
p>M(q)p+P (q)+Hc(ξ)+Ψ(C(x, ξ))

where Hc(ξ) and Ψ(C(x, ξ)) are chosen to satisfy
(20) and (21).

Example 3. Consider again the case of a normalized
pendulum

q̈ + sin q + dq̇ = u

with d a positive damping constant, and the total
energy function given as H(q, p) = 1

2p
2+(1−cos q).

The solution to (24) should be a function of the form
C(q, ξ) = q − ξ

Let (q?, ξ?) be the desired equilibrium. We shape the
potential energy P (q) in such a way that it has a
minimum at q = q?, ξ = ξ?. This can be achieved
by choosing a controller Hamiltonian of the form

Hc(ξ) =
1

2
β(ξ − ξ? −

1

β
sin q?)

2

and the function Ψ(C(q, ξ)) = Ψ(q − ξ) as

Ψ(q − ξ) =
1

2
k(q − q? − (ξ − ξ?)−

1

k
sin q?)

2

where β and k are chosen to satisfy (20) and (21).
Simple computations show that β and k should be
such that

cos q? + k > 0, β cos q? + k cos q? + kβ > 0

The resulting input u, according to (2) and (3), is then
given by

u = −
∂Hc

∂ξ
(ξ) = −β(ξ − ξ? −

1

β
sin q?)

Remark 4. In the same way we can also stabilize a
system of n ”fully actuated” pendulums, in which case
we have to solve n p.d.e.’s of the form (24), in order
to find the corresponding Casimir functions.

Example 4. The model of a permanent magnet syn-
chronous machine (Petrovic et al., 2001), in the case
of an isotropic rotor, in the dq frame can be written in
PCH form (1), with the state vector x = [x1, x2, x3]

>

and

J(x) =









0
LP

J
x3 0

−
LP

J
x3 0 −Φ

0 Φ 0









,

R(x) =





Rs 0 0
0 Rs 0
0 0 0



 , g =





1 0
0 1
0 0



 ,

where x1, x2 are the stator currents, x3 is the angular
velocity, P is the number of pole pairs, L is the stator
inductance, Rs is the stator winding resistance, and Φ
and J are the dq back emf constant and the moment
of inertia both normalized with P. The inputs are the

stator voltages [vd, vq]
>. The energy function of the

system is given by

H(x) =
1

2

(

Lx21 + Lx22 +
J

P
x23

)

The desired equilibrium to be stabilized is usually
selected based on the so–called “maximum torque per
ampere” principle as x? = [0, Lτl

PΦ , J
P
x3?]

> where τl
is the constant load torque. 4

Interconnecting the plant system with a PCH control

[

ξ̇1
ξ̇2

]

=

[

uc1

uc2

]

,

[

yc1
yc2

]

=









∂Hc

∂ξ1
(ξ1, ξ2)

∂Hc

∂ξ2
(ξ1, ξ2)









via the power preserving interconnection

vd = −yc1, vq = −yc2,

uc1 =
∂H

∂x1
(x), uc2 =

∂H

∂x2
(x)

yields the closed–loop system













ẋ1
ẋ2
x3
ξ̇1
ξ̇2













=

















−Rs

LP

J
x3 0 −1 0

−
LP

J
x3 −Rs −Φ 0 −1

0 Φ 0 0 0
1 0 0 0 0
0 1 0 0 0







































∂H

∂x1

∂H

∂x2

∂H

∂x3

∂Hc

∂ξ1
∂Hc

∂ξ2























(26)
Using Proposition 2, we get that the Casimir function
is given by C = 1

Φx3 − ξ2. Thus, the resulting
Lyapunov function would be of the form (19)

V (x, ξ) =
1

2

(

Lx21 + Lx22 +
J

P
x23

)

+Hc(ξ) + Ψ(
1

Φ
x3 − ξ2).

However, we can see that the equilibrium assignment
condition (20) cannot be satisfied, because we need to
shape both x2 and x3 to assign x?, and the Casimir
depends only on x3. To overcome this problem, the
interconnection matrix J(x) should be modified, but
this is not possible with the Control by Interconnection
technique.

In general, it is not possible to apply the Control
by Interconnection to the family of electromechan-
ical systems described in (Rodriguez and Ortega,
2003). Firstly, in most cases, the closed–loop matrix
Jcl(x, ξ) − Rcl(x, ξ) is full–rank. Secondly, even if
we can determine the Casimirs—as in the case of
the permanent magnet synchronous machine—, these
functions do not depend on the coordinates we need
to shape. The source of the problem is the lack of
interconnection between the electrical and mechanical

4 In the PCH modeling of the permanent magnet synchronous
machine, τl acts as a perturbation to the system.



subsystems, which can be solved modifying the inter-
connection matrix J(x) (Ortega et al., 2001; Ortega et
al., 2002).

In the case of electromechanical systems, using a con-
trol input u = −∂Hc

∂ξ
+ v̄, with v̄ a constant input,

leads to a forced Hamiltonian system with dissipation.
The analysis of (Maschke et al., 2000) also allows
to modify the interconnection structure to generate
Lyapunov function for nonzero equilibria. However,
even if Casimirs can be obtained (namely, microelec-
tronics actuators, magnetic levitation system, etc), the
stability analysis reveals that the minimum cannot be
assigned. Hence, this issue remains open.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have shown an extension of the
Control by Interconnection methodology, to stabilize
a system in the extended plant-controller state, and
a construction of a Lyapunov function based on the
plant and controller Hamiltonians and the correspond-
ing Casimir functions.

Many problems and questions remain open, among
then we might cite:

• In its general formulation Control by Interconnec-
tion consists of the power–preserving interconnection
of two passive systems that admit the existence of dy-
namic invariants. In this paper we have followed (van
der Schaft, 2000; Ortega et al., 2001) and considered
PCH systems—which are a particular class of pas-
sive systems—and taken the “natural” port variables
to define the passive map. Some recent research has
established the existence of alternative passive maps,
even for PCH systems (Jeltsema et al., 2004; Pérez et
al., 2004). With these new port variables the intercon-
nected system might admit new dynamic invariants
that we can use for energy shaping.

• As indicated in the paper, in some practical appli-
cations there are no Casimirs or even when they exist
they do not depend on the coordinates that need to
be “shaped”, hence we cannot assign the minimum to
the total energy functions. An alternative to Casimirs,
already indicated in (Ortega et al., 2001), is the gener-
ation of first integrals, that is, of solutions of (7). This
is a set of PDEs whose solutions clearly contain all the
Casimirs, but might include other functions useful for
energy shaping.

Current research is under way in both of these direc-
tions.
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