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Abstract: A flight-dynamics oriented simulation model of a flapping-wing Micro
Air Vehicle (MAV) has been developed. This concept is based on flapping flight
performed in nature by insects or hummingbirds. An optimization of the flapping
kinematics of the wing has been led, in order to maximize the mean lift and thus
the payload. A neural network has been designed to reproduce the function shape
of the wings movements, and the weights have been optimized using a genetic
algorithm. Results show a lift gain from 30 to 40%, and corroborate also some
mechanisms shown up through experiments. Copyright c©2005 IFAC
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1. INTRODUCTION

The Micro Air Vehicles (MAVs) represent nowa-
days a large field of investigation, due to their
interests in both civil and military domains : such
small and autonomous devices could be used for
inspecting high monuments, monitoring risks of
forest fires, or more generally for interventions
in narrow and hazardous environments, where it
would be dangerous to send a human agent. Con-
cerning the military domain, MAVs prove their
interest in being able to be both fully autonomous
and carriable by a single infantryman, with fore-
seen applications such as rescuing or reconnais-
sance (”behind the hill”). From now on, the stud-
ied concepts were mainly based on fixed or rotary
wings (helicopter-type). The proposed model fea-
tures flapping wings, which reproduces the flight
of insects or hummingbirds. The advantages are
on one hand a greater manœvrability, particularly

at low speeds or even for hovering, allowing indoor
missions, and on the other hand a more discrete
acoustical spectrum (in comparison with rotary
wings), which one is no longer centered around
one single frequency - the rotation frequency - but
more spread. The work presented here are led in
parallel with the Projet de Recherches Fédérateur
(federative research project, hereafter PRF) RE-
MANTA, conducted at the ONERA (Descatoire
et al., 2003), and which aims to enlarge the scien-
tific or technical knowledges and methods in the
field of flapping wings MAVs.

First, a review of the available works concern-
ing the theory of natural flapping flight and its
applications to artificial aerial devices has been
done, in a bibliographic study. It has allowed us
to draw out two possible configurations for this
kind of flight : bird-like flight, in which the wings
flap at low/medium frequency within a near ver-



tical plane, and insect-like flight, where the wings
flap at a higher frequency within a horizontal
or slightly inclined plane, generating lift in both
strokes directions (back and forth). This last kind
of flapping flight is also typical of hummingbird,
who is the only bird able to perform mastered
hovering flight.

Many authors have worked by now on under-
standing the animal flight, particularly during
the last century. The main encountered obsta-
cle was the inability of the classical aerodynamic
mechanisms known by then to explain the insect
flight : applicating classical theorems for a pair
of insect wings gave indeed a too weak lift to
sustain the flying animal (hence the famous para-
dox bumblebees can’t fly). Weis-Fogh was one of
the first to propose unstationnary aerodynamic
mechanisms from experiments, which would ex-
plain where came the missing lift from (Weis-
Fogh, 1972; Weis-Fogh, 1973). Let us also mention
the many works of Ellington on aerodynamics of
hovering flight (Ellington, 1984) and of Norberg,
who proposed a model inspired by the Rankine-
Froude momentum theory to calculate the lift of
a hovering bat (Norberg, 1993).

The last progress made in understanding aerody-
namics of insect flight came from Dickinson, who
simulated the flow around a fly wing Drosophila
melanogaster (Dickinson et al., 1999) using a
scaled wing model flapping in mineral oil, in order
to keep the low Reynolds (Re) number (a few hun-
dreds) characteristic of this type of flight. Three
specific aerodynamic effects have been shown up
as the cause of a lift gain at low Re : the circu-
lation generated by the rotation of the wing at
the end of a stroke, the delayed stall due to the
instationnarity of the movement, and finally the
wake capture, as the wing re-enters the flow it has
previously disturbed.

2. PRESENTATION OF THE SIMULATION
MODEL

2.1 Description

This model was initially written by T. Le Moing
(ONERA) in C++ object language. It computes
at each time step the values of the internal vari-
ables such as velocities, forces and momentums
as a function of the controllable inputs. There
are three independent inputs for each wing, cor-
responding to the three possible rotations of the
wing with respect to the body : ξ is the angle
of the stroke plane (ξ = 0 when the wing flaps
vertically and ξ = π/2 when it flaps horizontally),
λ is the angle locating the wing within the stroke
plane and ν is the angle of rotation of the wing
around its longitudinal axis (see fig. 1).
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Fig. 1. Definition of the position angles (here
ξ = π/2)

A local type approach has been chosen for this
model, dividing the wing in slices according to
2-D approach. The wing kinematics and the global
motion of the MAV allow to compute the lo-
cal aerodynamic velocities for each wing element.
This defines a local aerodynamic frame, and thus
a corresponding aerodynamic incidence. The ele-
mental forces are then calculated, according to the
analytical models adopted to represent the differ-
ent components of the aerodynamic force (Walker,
2002; Fung, 1993; Dickinson et al., 1999), and
those efforts are summed along the wing, giving a
global force and momentum applied to the mass
center of the MAV.

elements
wing

-
-

-

X

dX
dt

N.L.

∫

6
-

-
--

?
-

Total effort

Aerodynamics

V , α

X =




u
v
w
p
q
r




Kinematics

Total

∑

U =

(
ξ
λ
ν

)

momentum

Fig. 2. Structure of the simulation model

Although such a local bidimensional approach
does not take account for the transversal compo-
nents of the flow, it has been stated that it was
sufficient enough to reproduce the commonly ob-
served phenomena for this case of flight, and fur-
thermore that flight dynamics-oriented problems,
such as simulation and control, could be more
easily treated than with the CFD-based methods
(Sane and Dickinson, 2002). At last, the total
dynamic components (effort and momentum) are
integrated within an inertial frame to give - ac-
cording to Newton’s first law (NL) - the state
vector X, whose components define the kinematic
of the MAV : three translational velocities u, v, w
along each axis of the earth-bound inertial frame
and three rotational velocities p, q, r (respectively
roll, pitch and yaw).



X = t(u v w p q r) (1)

An overview of the structure of this model is given
on fig. 2.

2.2 Validation

Different validation steps have classically been led,
in order to prove the pertinence of the complete
simulation model (Rakotomamonjy et al., 2004).
In particular, some comparisons have been made
between this model and previous results given
by measurements on experimental devices. As an
example, one main result obtained by Dickinson
(Dickinson et al., 1999) is the influence of the
timing rotation with respect to the flapping of the
wing : it has been shown that if the rotation of the
wing begins slightly before the end of the stroke,
some extra lift is generated, which is clearly visible
as a peak on the vertical force records. On the con-
trary, if this rotation occurs after the beginning of
the reverse stroke, it induces a loss of lift. Fig. 3
shows the same type of experiment done using our
complete simulation model. The inputs λ (wing
flapping angle) and ν (wing rotation angle) are
respectively modelled with a triangular-shaped
signal (which corresponds to a constant angular
velocity during each stroke), and a square-shaped
signal, to ensure a constant incidence for a stroke.
The aforementioned functions are equal to

∆s(t) = tanh[kr cos(ωt + φ)]

for ν (kr being a parameter influencing the slope
of the front and back edges of the signal) and

∆t(t) =
∫

∆c(t)dt

for λ. The chosen configuration is based on the
specifications of a fictitious MAV, inspired by the
statistics of animal flight : a total wingspan of
2b = 15 cm, a mass of m = 30 g and a flapping
frequency of f = 40 Hz. Each wing is composed
of n = 10 elements.
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Fig. 3. Effect on the timing of wing rotation on
total lift

Fig. 3 shows clearly that the results are close to
those obtained experimentally : a phase advance
and a phase delay of ν with respect to λ cause

respectively a gain and a loss of lift in comparison
to the nominal settings (sign − in front of Rz is
due to the downwards orientation of the vertical
axis zn, as it is done conventionally in flight
mechanics). This suggests the future usefulness of
a differential control of the phase of the rotation
of each wing, which would generate a different lift
between the wings and thus a roll momentum, a
strategy that some authors think already used by
real insects to quickly change direction (Taylor,
2001).

3. OPTIMIZATION

After the model has been validated with arbitrary
wing movements, an optimization of those kine-
matics has been undertaken. The chosen criterion
in this study is the mean lift in hovering flight,
since it is directly related to the maximum weight
of the MAV and thus to the admissible payload
(which includes for a MAV sensors, batteries but
also actuators and navigation systems). Let J be
this criterion : J = −R̄z (again, the minus sign
corresponds to the downwards orientation of zn,
according to flight mechanics conventions. Due to
the periodical nature of the wings movements, the
problem has been reduced over one flapping pe-
riod (including down- and upstroke). The problem
is then to find the kinematics λ(t) or ν(t) which
minimize J over a period.

3.1 Input modelling

The complexity of the model, mainly due to its
nonlinear components, makes it very hard to reach
an optimal flapping function expressed under an
analytical form, as the solution of a functional
equation. That is why this potential solution has
been modelled under a parametric form, thus
transforming a continuous-time optimal control
problem into a non-linear programming problem.
The question is now not to restrain too much the
space of solutions, by imposing a certain form
to the desired function (triangular, square. . . ).
The candidates functions were consequently mod-
elled using neural networks, with the idea that a
complex enough network could reproduce a large
class of admissible functions. The Neural Network
Matlab r©toolbox was used to represent, initialize
and learn the network.

The first step is to choose an adapted network
structure. The more complex the network is, the
more various signals it can represent, but the
optimization will in this case be less efficient, be-
cause of the high number of parameters involved :
the compromise is to find the minimal network
representing as many function shapes as possible
suiting the specifications. Observations of natural



6b1

σ

6b2

©©©©©*

PPPPPq

PPPPPq

©©©©©*
-

6

∑
x

f(x)

σ

w1

w2

w3

w4 bs

Fig. 4. Structure of the chosen network

insect wing kinematics have shown that the geo-
metrical incidence remains nearly constant during
a stroke, before the wing revolves and begins the
next stroke. As a consequence, a square-shaped
function was used as a basis for the rotation angle
ν(t). But we have to consider also more classical
functions, such as trigonometric ones for example :
the chosen network must then be able to repro-
duce square νs = tanh(kr cos ωt) as well as cosine
νc = cos ωt functions. After a few searches, we
found that the minimal network reproducing both
kind of signals features 2 layers, with 2 neurons
on the hidden layer (input layer) and 1 neuron
on the output layer. This network is shown on
fig. 4. The neurons on the hidden layer have a
sigmoid transfer function σ(u) = 1

1+e−u , and the
output one a linear transfer (and acts just as
a summing element). The weights {wi}i=1...4 on
each connection plus the biases give a total of
4 + 3 = 7 parameters to be optimized.

The learning uses the retropropagation method,
available in the above-mentioned toolbox. The
results of learning of νs and νc during one period
(given the periodic nature of the model inputs)
are shown on fig. 5.
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The chosen network appears able to reproduce
those function shapes, as well as some others,
which were not represented here, such as trapeze-
shaped functions, where the junction between the
constant floors are made using sine or polynomial
arcs. The same operation is performed to model
the flapping angle λ(t) : this time, a total of
4 neurons on the hidden layer was necessary to
reproduce the largest class of shapes.

3.2 Optimization algorithm

Let n be the number of neurons on the hid-
den layer of the network. {wi}i=1...n are the
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input weights, {wi}i=n...2n the output weights,
{bi}i=1...n the neuron biases and bs the output
bias. Let also Θ = ({wi}i=1...2n, {bi}i=1...n, bs) be
the parameters array subject to optimization, Θ̂
the optimum value, and fΘ(t) the corresponding
function, which can be directly expressed :

fΘ(t) =
n∑

i=1

wi+n

1 + e−(wit+bi)
+ bs (2)

At first standard optimization algorithms (New-
ton and Sequential Quadratic Programming meth-
ods) have been used to find Θ̂. But the results
were very dependant upon the initialization point
Θ0, and although the algorithm converged prop-
erly, the optimal array Θ̂ and thus the corre-
sponding kinematics and mean lift were different
for many different values of Θ0. This observation
was confirmed by studying the sensitivity of the
lift −R̄z with respect to the different components
of Θ. Figures 6 and 7 show the values of −R̄z

as a function of (w3; w4) and (b1; b2) respectively.
The undulating shape of the surfaces and the
many peaks correspond to local optima, in which
a classical optimization algorithm can easily be
trapped. That is why a genetic algorithm (GA)
was used to try to override those local optima.
The principle of this type of algorithm (Ouladsine
et al., 1995) is to generate a population of in-
dividuals, each one corresponding to a value of
Θ. The population is then mixed, each individual
having the ability to recombine his genes (the
components of Θ) with a randomly selected other
individual to try to find a better candidate to
improve J .

Since this algorithm does not take any explicit
constraint into account, one has to find the way
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to express the necessity for the optimal solution
to be periodic, i.e. fΘ̂(0) = fΘ̂(T ). This condition
is then equivalent to (eq. 2) :

n∑

i=1

wi+n

1 + e−(wiT+bi)
−

n∑

i=1

wi+n

1 + e−bi
= 0 (3)

and it is now possible to express one chosen
parameter as a combination of the other ones, for
instance the last output weight w2n :

w2n = −
∑n−1

i=1 wi+n

(
1

1+e−(wiT+bi)
− 1

1+e−bi

)
(

1
1+e−(wnT+bn) − 1

1+e−bn

)

(4)
thus reducing the dimension of the parameter
space. Others methods of global optimization
based on heuristical algorithms have also been
tested, such as random adaptive search and sim-
ulated annealing, but we will focus here on the
results given by the GA.

4. RESULTS

A reference case was defined using standard func-
tions for the flapping angle λr(t) and the rotation
angle νr(t), defined respectively as :

νr(t) = tanh
(

10 cos
2πt

35

)
(5)

λr(t) =
∫ t

0

tanh
(

4 cos
2πu

35

)
du (6)

Those functions and their respective time deriva-
tives are represented on fig. 8(a), and the corre-
sponding local aerodynamic incidence α and lift
−Rz on fig. 8(b). Those functions were arbitrar-
ily chosen after studying the kinematics of many
flying animals in nature. The corresponding mean
lift over a period is |R̄z|r = 0.1994 N, and the
stroke plane is horizontal (ξ = π/2, see fig. 1).

First the rotation angle ν(t) was optimized, λ
being equal to λr. The result is shown on fig. 9.
The mean lift is |R̄z| = 0.2649 N, which represents
a gain of about 33% in comparison with the refer-
ence case. The optimal function shape is close to
the standard one, but it is very interesting to no-
tice how these results fit with previously observed
behaviours : the optimal function shows a phase
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lead (+18.44˚) with respect to the reference one,
which was not dephased. This corroborates the
fact that an advanced rotation can bring an extra
lift, in opposition with symmetrical kinematics,
as observed with experimental devices such as
Robofly (Dickinson et al., 1999). Another signi-
ficative point is that this phase lead did not ap-
pear explicitly within the model of the function :
the weights of the neural network are indeed not
directly interpretable in terms of physical compo-
nents of the output function such as amplitude or
phase.

The same method was applied for an inclined
stroke plane : ξ = 45˚. This configuration is also
frequent among the natural flyers, in particular
for the Odonates (Wakeling and Ellington, 1997).
The results are shown on fig. 10. This time, the
rotation angle is dissymmetrical (νmax 6= −νmin),
a feature also present in nature when the stroke
plane is inclined. But this optimal shape features a
great rotation amplitude of the wing (it performs
3/4 of a complete rotation around its axis, see
fig. 10(c)) that is not found in animal flight,
because of some inherent articular limitations.

The genetic algorithm did not give acceptable
results for the optimization of λ using the stan-
dard criterion : the optimal function presented
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very sharp variations and, besides the fact that
the corresponding flapping speed λ̇ would have
been unreachable by any physical actuator, the
inner nonlinearities of the model generated too
many singular points during the simulation. The
criterion was then modified to explicitly limit the
peaks of λ̇, by addition of a penalty term :

J̃ = αJ + eβ ˙|λ|max (7)

where α and β are weighting coefficients. Fig. 11
shows the result obtained for α = 1 and β = 0.1.
This time the optimal function shape is much
smoother, and close to a sinusoid. The lift gain
is quite important : |R̄z| = 0.2794 N, or +40%,
which suggests that this function shape might be
preferred over the triangular reference one λr in
further simulations. This type of kinematics would
also be more convenient to implement on a real
MAV, by using for example a steady oscillating
resonant structure to drive the flapping.

5. CONCLUSION AND PERSPECTIVES

A simulation model has been previously developed
for a flapping wing Micro Air Vehicle, which in-
cludes the specific aerodynamic effects for low-
Reynolds flapping flight. The wing kinematics,
defined as the inputs of the model, have been mod-
elled using neural networks designed to reproduce
the widest class of suitable function shapes. The
flapping angle λ(t) and the rotation angle ν(t)
have been modelled with two single hidden layer
network, having respectively 2 and 4 neurons on
that layer. Then a genetic algorithm has been used
to find the optimal kinematics so as to maximize
the mean lift and thus the available payload, with-
out being trapped in the many local optima. The
result shows close similarities to previously ob-
tained experimental results, in particular the fact
that a lead advance of ν (rotation) with respect
to λ (flapping) brings an extra lift. The mean lift
was improved by 30 to 40% in comparison with
a reference case. Since this model can simulate
the 6-degrees of freedom motion of the MAV, a
similar procedure could be used for longitudinal
flight (e.g. to maximize the forward speed). Those
results are a useful help to design a flapping wing
MAV, the next step being the development of suit-
able nonlinear control methods with this model.

REFERENCES

Descatoire, F., Th. Le Moing, F. Bruyant and
A. Morlière (2003). PRF REMANTA :
Analyse de concepts de microdrones à
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