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Abstract : This paper is dedicated to bounded error identification with complex valued
non-linear models. Complex intervals are characterized by using polar forms and a new
inclusion function is given for the addition of sectors. The latter is expressed as an
optimization problem solved analytically. The new complex interval arithmetic is used
with actual data and a complex valued non-linear model for the bounded error
identification of the thermal properties of materials. Copyright © 2005 IFAC.
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1.INTRODUCTION

In the literature, parameter estimation problems are
usually solved by probabilistic methods where an
explicit characterization of the measurement noise is
assumed available. In practice, this is not usually the
case for many reasons (for instance, there is a
modelling error that cannot be taken into account by
a random variable) and it is more natural to assume
that the perturbations belong to a known set. In such
a case, bounded-error approaches allow the
characterization of the set of all state or parameter
vectors that are compatible with the measured data, a
model structure and the prior error bounds. The
problem of parameter estimation in a bounded error
context has been investigated by many researchers
and several techniques have been established for
characterizing the posterior feasible set (see e.g.
Milanese, et al., 1996; and the references therein).
For linear models for instance, simple-shaped forms
such as ellipsoids, parallelotopes, zonotopes or boxes
are used to give an enclosure of this set (Durieu, et
al. 2001; Maksarov, and Norton, 2002) whereas for
non-linear models, techniques based on interval

analysis and constraint satisfaction problems are used
(Jaulin, and Walter, 1993; Jaulin, et al. 2001; and
references therein).

For many real-life engineering problems, it is more
convenient to base the experimental modelling on
frequency response data the system is then
described by a complex-valued model. In a bounded
error context, all the uncertainties are thus described
by complex sets. As a result, the derivation of an
optimal inclusion function for a complex-valued non-
linear model is a major issue for ensuring success for
the identification procedure. The paper is structured
as follows: fundamentals about set membership
identification and interval analysis are recalled in
section 2. Section 3 is dedicated to complex interval
analysis and contains the major contribution of this
paper: polar forms are used for characterizing
complex intervals and the smallest polar complex
interval, called secfor, containing the sum of two
sectors is given. Section 4 contains the application of
polar complex intervals to bounded error
identification of the thermal properties of a sample
material from actual data.



2.SET MEMBERSHIP IDENTIFICATION WITH
INTERVAL ANALYSIS

2.1 Set membership estimation

We denote by y,, (p) the model output vector, y the
experimental data vector and E a feasible domain for
output error, known prior to the identification. The
feasible domain for model output is then given by

Y=y+E (1)

Estimating the parameter vector p in a bounded error
context consists in determining the set S of all
acceptable parameters

S={pePly,(p)eY} @)

The characterization of the solution set S is a set
inversion problem; a guaranteed approximation of
such a set can be provided by using interval analysis.

2.2 Interval Analysis

Interval analysis was initially developed to take into
account the quantification errors introduced by the
rational representation of real numbers with
computers (Moore, 1966) and was later extended to
validated numerics. An interval [a]=[a,a] is a
connected and closed subset of R. The set of all
intervals of R is denoted by IR. Real arithmetic
operations are extended to intervals. Let f:R" ->R" |
an inclusion function of f, denoted by [f], is defined
by:

V[a] € IR", f([a]) < [f]([a]) (€)

An inclusion function of f can be obtained by
replacing each occurrence of a point variable by its
corresponding interval variable and by replacing
each standard function by an interval evaluation.
Such a function is called the natural form. In practice
the inclusion function is not unique, it depends on
how f is written.

2.3 SIVIA
SIVIA (Set Inversion Via Interval Analysis, (Jaulin,

et al., 2001)), based on interval analysis, allows the
characterization of the solution set S, defined by (2),

by computing two sets S and S such as:
Scscs “4)

The set S contains all the boxes proved to be

feasible. A box [p] is called:
- feasible, if [ym ([p])} cY
- unfeasible, if [ym ([p])} NY =J

- undetermined, otherwise.

The recursive algorithm SIVIA partitions the prior
space IP into boxes [p] to be submitted to these tests.
Any undetermined box is bisected and tested again,
unless its size is less than a precision parameter 1 to
be tuned by the user, which ensures that the
algorithm terminates after a finite number of
iterations. The outer approximation is then computed
as

S=SnAS (5)

where AS is the wunion of all remaining
undetermined boxes. Since SIVIA is a branch-and-
bound algorithm, its complexity is exponential with
the number of parameters to be estimated, which
means that it is efficient only when the dimension of
p is low. To reduce the number of bisections in
SIVIA, contractors founded on constraint
propagation techniques for instance (Jaulin, et al.,
2001) are used. These techniques make it possible to
reduce the search box without making bisections.

3.COMPLEX INTERVALS ANALYSIS

The simplest complex interval approximation is the
rectangular representation where a complicated
shaped set is approximated by a rectangle; but the
circular form, where a set is approximated by a disc,
is more often used. Unfortunately, both of complex
interval representations cited above are not closed
with respect to the arithmetic operations {+, —, *, /}.
This is due to the fact that a multiplication of a set by
a complex number is a rotation, thus the result of
such an operation must be wrapped in a rectangle,
which introduces large pessimism. The arithmetic
operation {*} is then non minimal and a pessimism
is introduced when a multiplication of two complex
intervals, represented as rectangles or discs, is
performed (Henrici, 1971; Rokne, and Lacaster,
1971; Nickel, 1980; Klatte, and Ullrich, 1980;
Alefeld, and Herzberger, 1983; Kearfott, 1996;
Petkovic, and Petkovic, 1998).

In this paper, we endeavour to extend the polar
representation of complex numbers to the case of
intervals. Indeed, the polar representation can be
preferred for non-linear complex valued models. We
will prove that both the multiplication and the
division are exact operations; the result of the
multiplication of two polar complex intervals is a
polar interval. Nevertheless, this property is not
satisfied for addition and subtraction. Consequently,



the main contribution of this paper is the derivation
of an algorithm which allows to compute the
minimal polar complex interval containing the sum
of two polar intervals.

3.1 Polar representation : Definition

Consider the intervals [ p] c R* and [9] c R, the
set defined by

Z={zeC|z=pe[9,pe[p], 6’6[0]} (6)

is called a polar complex interval (or a sector)
denoted by {[p];[0]}. A polar interval can be

uniquely characterized by two real intervals: its
[p}=lp™, p7],  and  its
[61=[67,07]; as illustrated in fig.1, to ensure

uniqueness of the representation, we can always
choose the bounds of the latter interval such that

magnitude angle

0<0"-0 <2z, 00 <27, 056 <4r (7)

The set of all polar complex intervals is denoted by
s(C).

3.2 Arithmetic operations

Let Z={[pi[6] and Z,={[p,]:[6,]} be two

sectors , the multiplication operation between Z; and
Z, is defined as follows:

Z-Z, é{zl *zz|zleZl,z2 € Zz}

)ei(gl +6,)

(Pl*pz
(21,0:,6,.6,) [ <[ 2, ] [6,]x[6,]

{lolle:]: 101+ 0.} = {[]: [])

Since the set of the real intervals is closed with
respect to addition and multiplication, the product of
two sectors is also a sector ; this operation is then
minimal. Similarly, the division is defined by

{pl;gl}/{p2;02}| }

Z/z, =
v {{pl;gl}ezlﬂ{pz;HZ}EZZ

= {[o)[p]:10]- 0]} ={[): )

where 0 ¢[p,]. We should note that the argument
bounds of the result may not verify (7). In such a
case, we add 2kz, k € Z to the argument of the
computed sector until (7) is met.
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Fig. 1. A sector orientation
By contrast, the set

Z®Z,={z+z, | z€Z,z,€Z,} (10)

known as the Minkowski sum (Farrouki, and
Pottmann, 2002), is not a sector but has a complex
shape; to define addition as an operation in S(C), one
has to determine some eclement of S(C) which
contains this set. Some degree of pessimism will thus
be introduced. To minimize pessimism, we define
Z,+7, as the smallest sector, in the sense of inclusion,
containing Z;®Z,:

Z+Z,=nZ, ZeS(C), Z,®Z,=nZ (11)

Z,+7Z, defined in this way exists as an element of

S(C), because the intersection of any number of

closed boxes is a closed box in R*. Subtraction is
defined in the same way, and does not in fact
necessitate a separate treatment from addition,
because Z, - Z, = Z\+(-2,), where (-Z,)={z |-z € Z,};
therefore we shall not mention subtraction in this
paper.

3.3 Characterization of the addition of two sectors

Let Z, = { [pl] ; [61]} and Z, = { [pz] ; [62]} be two
sectors and Z their sum; then Z can be uniquely

written as Z = { [ p] ; [¢]} . Then the bounds p and
p' of [p] must verify

p = min |z|
2e2,®2,
) (12)
— max |
P 2e2,®2,

with

0, i0,

pe +pe

=Pl + P} +2p,p,c08(6,-6,) (13)



and the function square root is monotonously
increasing, solving the first of problems (12) is
equivalent to solving

ménf(pppzag) (14)
with the following definitions:

f:(plap2>9)|_>p12+p22 +2p,p, COS(H) (15)
Q:[pl]x[pz]x[H]CR+><]R+><[0,27r]

with 6 =6, —6,. Thus the problem of finding p is
identical to minimizing a function on a box of R’.

The same applies to p, by replacing min by max. In
the same way, the bounds of [¢] are solution of

¢ = min A(z) ”
9" = o 4(2)

where A(z), the angle of a complex z, is defined on
Z\+Z, such that A(z) € |:¢',¢+], this is always

possible because Z ®Z,cZ and ZeS(C).

Denote z, = pe’, z, = p,e”,
i0,

z=pe’ =pe” +p,e” and x=p,/p,,then

tan (¢) = g(x,6,.6,) (17)

where function g is defined by

xsing, +sin6,

g(pl,p2,91,92)= (18)

xcosé, + cosb,

Since the derivative of function tan is strictly
positive, the extrema of 4 are also extrema of g. In
conclusion, computing the lower and upper bounds
of [p] and [¢] are optimization problems that will be
solved analytically, since they are not very difficult
and the number of variables is only 3.

3.4 Optimality conditions

Let Q= [u,]x[u,]x[u;] = R*and f real function on
Q) , and consider the problem

max f (19)

Q is a compact convex set and problem (19) has a

solution u’ =(u1 Uy Uy ) For any index i, the i"

component u; of u* must verify one of the following
conditions :

a(u*) =0 and Zzi’ (u)<0 (20)
u, =u; and %(u*) <0 (21)
u, =u and %(u) >0 (22)

i

in the case of a minimization problem, the same
conditions apply with all inequalities reversed.
Observe that each of these conditions is composed of
a first part which is an equation (first-order
condition) and a second part which is an inequality
(second-order condition). A set of n first-order
conditions, one for each index i, is an equation set,
which will usually have one solution. A point of R"
which verifies, for each of its component, one of the
first-order conditions will be termed a candidate. If
the corresponding second-order condition is also met,
it will be termed an acceptable candidate (in fact, a
local optimum). The strategy used by the authors to
solve (15) is to determine analytically all candidates,
by examining all possible combinations of first-order
conditions, then, by investigation of second-order
conditions, to eliminate the candidates that can never
be acceptable. The authors set up a reasonably
efficient algorithm to check the acceptability of
remaining candidates, and to select the optimum, by
simple comparison among acceptable candidates
(Candau, et al., 2005).

3.5 Algorithms

As an illustration of the methodology, let us consider
the determination of the maximum of the magnitude
of addition of two sectors. The analysis of the
derivatives of (15) leads to the following candidates

(A1) p=p0, if p+ pycosf” >0 (23)
(A2) o =p, if pi + p;cosf” <0 (24)
(B1) p=p,, if p; + p cos@d >0 (25)
(B2) p=p,, if p, + p cosd” <0 (26)

(C1) sing" =0, if cosd” >0 27)
(€2) 0 =0°, if sin@ <0 (28)
(C3) 0" =6, if sinf >0 (29)

Each candidate is assigned a label of three numbers
ijk , where i=1, 2, j=1, 2, k=1, 2, 3. For instance the
candidate (123) is the point (p/,p,,07), its
conditions of acceptability are

P+ p,cosd >0 (30)
p, + pcosd <0 31)
sind” >0 (32)



and the corresponding value for the maximum of p is

p(123)= () +(p:) +201 ps cos(6) (33)

There are 12 candidates and 3 conditions that must
be checked in order to determine the acceptability of
each candidate. In fact, some conditions will never
be true, or some combinations will never hold. The
actual number of expressions to evaluate is in fact
fairly small. Finally, four algorithms are set up for
computing the extrema of both magnitude and angle
of the smallest sector containing the sum of two
complex sectors (Candau, et al., 2005). In the next
section, this new inclusion function is used for
performing set inversion via interval analysis.

4. APPLICATION
4.1 Experimental procedure

The experimental procedure under analysis hereafter
is devoted to the measurement of the thermal
properties of materials : the thermal diffusivity,
denoted a, and the thermal conductivity A, of a
Polyvinylidene  Fluoride (PVDF) sample are
measured simultaneously by using a so-called
periodic method, using multi-harmonic heating
signals (Boudenne, et al., 2004). The experimental
set-up is shown on figure 2.

The PVDF sample under study is held in between a
metallic rack, with a thermal grease ensuring good
thermal exchange between the sample and the
metallic rack. The front side of the rack, made of
brass, is also fixed to a heating device
(thermoelectric cooler). The rear side, made of
copper, is in contact with air at ambient temperature
and high vacuum. Experimental data is given as the
following frequency response

Trear (]CU)

T

, (34
Sfront (Ja))

Hs(ja))=

where the temperature spectra are given by the
Fourier transform of the time-history signals.

Rear face
Thermocouple :
Copper Temperature Tear
grease
Brass Thermocouple :

Temperature Tiront

Front face : periodical heating

Fig. 2. The experimental set-up.

A guaranteed characterization of an earlier version of
the experimental set up has already been performed
in a bounded-error with set inversion and projection
algorithms in (Braems, et al., 2003), but, complex
intervals were approximated by rectangles. In the
sequel, the authors aim to use the new inclusion
functions with polar complex intervals. The latter
should minimize the pessimism in interval
computations.

The system under study is modelled with one-
dimensional  quadrupoles  (two-port  transfer
functions). The quadrupole method is well known
and extensively used in thermal sciences (Wang, et
al., 2002). A “quadrupole” Z(s) is defined by

cosh(\/;) isinh(\/g)

Jrs
cosh(\/;)

Z(s)- (35)

Jes
Tsmh(\/;)

where 7=6%/a, R=6/2 and & is material

thickness. For the particular case of the grease layer,
which is assumed with no inertia, the relationship
uses the resistance only and becomes

Z(s) {(1) ﬂ (36)

The model transfer function is then given by

T
H(S,p) — Trear (S) (37)

front (S)

where the front temperature is given by (the s symbol
being removed, for convenience)

{Tﬁnm}: 7 7 7. 7 ZCOPPUHGS)

Brass Gre Sample Gre
¢ front

and the rear temperature is given by

Vm } 7 { T, } (39)
¢rear Comp _half h TZ)

where /4 is a constant coefficient modelling surface
heat exchanges with ambiant air, and where Ty is rear
face surface temperature.

4.2 Bounded-error identification

Error bounds on the experimental transfer function
are calculated prior to the identification, from
measurements repeated 20 times. For the sample
under study, prior search space for the parameters is:



J7, €[1.30] and R, €[10*,5]  (40)

The prior search space bounds are obtained from
extreme values of thermal conductivity and
diffusivity found in the literature for polymeric
materials, and also from the uncertainty on the
material sample thickness. SIVIA with a contractor,
n= 0.001 and the polar inclusion functions as
defined in section 3, derives in 20 s the inner and
outer approximations plotted in figure 3.

The projection of the outer approximation S onto the
parameter axes provides an outer approximation of
the uncertainty associated with each of the identified
parameters

{\/Z e [6.8331, 7.2404] 5”2

R, €[0.010766, 0.011409] m’K W™
thus

7.037+2.9% s
R, =0.01109+2.9% m'KW"

{ .-
The identified values are in agreement with the
values found in the literature for the material under
analysis.

5.CONCLUSION

This paper addresses bounded error parameter
identification for complex-valued non-linear models.
Complex intervals are characterized with polar forms
and a new inclusion function is defined for
computing the smallest sector containing the sum of
two polar complex intervals. The new inclusion
function is used within a set inversion algorithm for
the bounded error identification of thermal properties
from actual data. The evaluation of the new inclusion
function will be continued with new algorithms and
experimental data.
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