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1. INTRODUCTION

The problem of Fault Detection and Isolation (FDI) in
control systems has been the subject of considerable
attention during the past two decades. This research
has resulted in a variety of methods and a vast amount
of papers in the literature (see for instance (Frank
and Ding 1997, Gertler 1998, Patton 1994) and ref-
erences therein). Many of these methods are based
on amodel–basedapproach, also known as analytical
or functional redundancy. In contrast to approaches
based onphysical or hardware redundancy, the former
exploit the mathematical model of the system under
consideration, leading to a two stage procedure: (i)
residual generation and, (ii) decision making.

While appealing, since it does not require additional
hardware, a potential problem with the analytical ap-
proach is itsfragility: a mismatch between the ac-
tual plant and the model used in the FDI algorithm
can result in false alarms. To avoid this difficulty, the
algorithm must be robust both against modelling er-
rors and exogenous disturbances. Robust FDI methods
have been well studied (see for instance (Collins and
Song 2000, Emaimi-Naeimiet al. 1998, Frank and
Ding 1997, Henryet al.2001, Jianget al.2002, Patton

1994, Saberiet al.2000, Stoustrup and Niemann 2003,
Zhonget al.2003) and references therein). A potential
disadvantage of these methods is the difficulty in iso-
lating the exact location of the fault and in detecting
simultaneous faults. Moreover, in the case of dynamic
uncertainty, this problem is generically non–convex
in all variables involved(Shim and Sznaier 2003) and
thus computationally hard to solve.

In this paper we propose to solve these difficulties
by pursuing a risk–adjusted approach, based on sam-
pling the uncertainty set. This removes one of the
interpolation constraints that renders the problem non-
convex, allowing for efficient solutions. The proposed
new FDI framework has the following advantages over
currently existing methods:

(a) It allows for handlingarbitrary dynamic uncer-
tainty structures (as opposed to parametric uncer-
tainty)

(b) It allows for arbitrary fault dynamics, rather than
having the fault and nominal operation sharing
the same dynamic matrixA. In addition, it also
provides an estimate of which fault has occurred.

(c) Its computational complexity grows only poly-
nomially with the dimension of the plant.



(d) It avoids beingover–optimistic, in the sense of
assuming that a fault has not taken place when
the probability of the experimental data having
been generated by the nominal dynamics is low.

Finally, we also present a deterministic, convex relax-
ation for the special case of multiplicative uncertainty
and benchmark both methods using a simple example.

2. PRELIMINARIES

2.1 Notation

Below we summarize the notation used in this paper:

bxc largest integer smaller than or equal
to x ∈ <.

x real–valued column vector.
‖x‖p p-norm of a vector: ‖x‖p

.=

(
∑m
k=1 |xk|p)

1
p , p ∈ [1,∞),

‖x‖∞
.= maxk=1,...,m |xk|.

AT conjugate transpose of matrix A.
A > 0 A = AT is positive definite.
A < (≤)B (A−B) < (≤)0
I,0 the identity and null matrices of com-

patible dimensions (when omitted).
σ (A) maximum singular value ofA.
`m2 Banach space of vector valued real se-

quences equipped with the norm:

‖x‖2
.=
(∑∞

i=0 ‖xi‖22
) 1

2

`m2[0,n] subspace of̀ m2 formed by finite se-
quences of lengthn+ 1.

X(λ) λ–transform of a single–sided real se-

quence{x}: X(λ) =
∞∑
0
xiλ

i.

BX (γ) closed γ-ball in a normed spaceX :
BX (γ) = {x ∈ X : ‖x‖X ≤ γ}

H∞ Space of transfer matrices with
bounded analytic continuation inside
the unit disk, equipped with the norm:
‖G‖∞

.= ess sup|λ|<1 σ (G(λ)).
RX subspace ofX ⊆ H∞ composed of

real rational transfer matrices.
BHn∞ set of (n − 1)th order FIR

transfer matrices that can be
completed to belong toBH∞, i.e.
BHn∞

.=
{
H(λ) = H0 + H1λ +

. . . + Hn−1λ
n−1 : H(λ) + λnG(λ) ∈

BH∞, for someG(λ) ∈ H∞
}

.

In the sequel, to any finite sequence{xk}, we will
associate the following finite lower Toeplitz matrix:

Tn
x =


x0 0 . . . 0
x1 x0 . . . 0
...

...
...

...
xn−1 xn−2 . . . x0

 .
In the case of an LTI systemS, we will denote byTn

S

the lower Toeplitz matrixTS associated with the first
n elements of its impulse response.

2.2 Background Results

In this section we summarize, for ease of reference,
several results that will be used to recast the FDI prob-
lem into a convex optimization form. We begin by re-
calling an algorithm, developed in (Lagoaet al.2001),
that generates uniformly distributed finite impulse re-
sponses{hi}Nsi=1 with hi = {Hi

0,H
i
1, . . . ,H

i
N} so

that the functionHi(λ) .=
∑N
k=0 Hi

kλ
k; Hi

k ∈ <m×s
can be completedto belong toBH∞. It will used to to
obtain a convex, computationally tractable stochastic
relaxation of the robust FDI problem in the case of
structured uncertainty and noisy measurements.

Algorithm 1.

Letk = 0. GenerateN1 samples uniformly distributed
over the set

{H0 : σ(H0) ≤ 1}. (1)

(1) Let k := k + 1. For every generated sample
(Hi

0,H
i
1, . . . ,H

i
k−1), consider the partition

Hi
k · · · Hi

1 Hi
0

Hi
k−1 · · · Hi

0 0
...

...
...

Hi
0 0 · · · 0

 =
[
Hi
k B

C A

]
(2)

and let the matricesY andZ be a solution of the
linear equations

B = Y(I−ATA)
1
2 ;

C = (I−AAT )
1
2 Z,

(3)

(2) LetJ(H0,H1, . . . ,Hk−1) .= |(I−YYT )
1
2 |m|(I−

ZTZ)
1
2 |s. Generate⌊

NsJ(Hi
0,H

i
1, . . . ,H

i
k−1)

⌋
, (4)

samples uniformly over the set{W : σ(W) ≤
1} and for each of those samplesWi, compute

Hi
k = −YAtZ + (I−YYT )

1
2 Wi(I−ZTZ)

1
2 .

(5)
(3) If k ≤ N go to step 1. Otherwise, stop.

It can be shown (Lagoaet al. 2001) that the prob-
ability distribution of the samples generated by this
algorithm converges with probability one to a uniform
distribution asNs → ∞. Moreover, for a finiteNs,
the difference between this probability density and a
true uniform one isO( 1

Ns
).

The next result gives a necessary and sufficient condi-
tion for the existence of an LTI bounded`2 operator
mapping two given sequences.

Lemma 1.(Carath́eodory-Fej́er). (Foias and Frazho 1990).
Given two sequencesu = {u(0), u(1), · · · , u(l−1) ∈
Rn} andy = {y(0), y(1), · · · , y(l− 1) ∈ Rm}, there
exists a stable, causal, linear time-invariant operator
∆ with ||∆||∞ ≤ γ such that∆u = y if and only if
T
′

yTy ≤ γ2T
′

uTu.



3. ROBUST FDI

3.1 Problem Formulation

In this paper we consider the problem of fault de-
tection and isolation for systems represented by the
following parameterized fault model which includes
both dynamic uncertainty and disturbances:

y =

[
G0(λ,∆) +

r∑
i=1

fiGi(λ,∆i)

]
u + d (6)

Here the transfer matricesG0(λ,∆o) andGi(λ,∆i), i =
1, · · · , r represent the plant under normal (e.g. non
failure) conditions and dynamic fault models, respec-
tively, ∆i ∈∆i ⊂ BH∞ represent (structured) model
uncertainty andd, ‖d‖2 ≤ δ represents an unknown
but `2 bounded disturbance. The scalarsfi ∈ [0, 1]
are fault indicators, withfi = 0 corresponding to the
case of no failure andfi = 1 corresponding to the
extreme case of total failure. Note that this formulation
allows for the uncertainty to enter the dynamics in an
arbitrary way.

In this context, the FDI problem can be stated as:

Problem 1.Given a model of the plant under normal
conditionsGo(λ,∆o), failure dynamicsGi(λ,∆i), a
boundδ on the measurement noise, uncertainty sets
∆i, and n input/output experimental measurements
determine: (i) whether a fault has occurred, and (ii)
in that case isolate it and determine its strength.

Note that in general, due to the presence of uncer-
tainty and noise, there may exist more than one set
{∆i, d, f} that explains the experimental input/output
data. In that case, to avoid ambiguities, we will select,
among all possible solutions, the one corresponding
to the minimum value of‖f‖2. This choice minimizes
the number of false alarms, since it tries to explain,
whenever possible, the experimental data as being pro-
duced by the normal (non–failure) dynamics, possi-
bly affected by dynamic uncertainty and measurement
noise. With this choice, Problem 1 can be recast in the
following (infinite–dimensional) optimization form:

Problem 2.Given thea priori informationGi(λ,∆i),
δ and the experimental datau andy find:

min
∆i ∈∆i

d, ‖d‖2 ≤ δ

‖f‖2

subject to:

y =

[
G0(λ,∆) +

r∑
i=1

fiGi(λ,∆i)

]
u + d

(7)

3.2 Problem solution.

Unfortunately, as stated Problem 2 is not jointly con-
vex in all the variables involved (∆i, fi, di). Indeed,

by appealing to Carathéodory-Fej́er and Schur com-
plement arguments (Shim and Sznaier 2003), it can
be shown that even the simpler case of multiplicative
unstructured uncertainty leads to a bilinear matrix in-
equality (BMI) ind, f . These problems are generically
NP–hard (see for example (Tuan and Apkarian 1999))
and thus computationally expensive to solve.

To avoid this difficulty, in the sequel we propose to
use a stochastic relaxation of the original problem
that has polynomial, rather than exponential, com-
putational complexity growth with the problem data
(Khargonekar and Tikku 1996). The main idea of the
method is to uniformly sample the set of admissi-
ble uncertainties∆i∆i∆i, in an attempt to find at least

one element∆̃o ∈ ∆o and r pairs
{

∆̃i, f̃i

}
∈

∆i × [0, 1], i = 0, r so that modelGo(λ, ∆̃o) +∑
fiGi(λ, ∆̃i) together with an admissible noise

d̃, ‖d̃‖2 ≤ δ can explain the experimental datay.
As we show next, this removes the interpolation
constraint that renders the problem non–convex in
(f, d,∆).

Lemma 2.For fixed∆i, i = 0, r, Problem 2 is equiv-
alent to the following LMI optimization problem:

minα
subject to:[
α fT

f I

]
≥ 0,

[
δ2 X ′

X I

]
≥ 0 (8)

X = y −
[
TG0,∆o

+
∑

fiTGi,∆i

]
u

where TGi,∆i denotes the Toeplitz matrix associ-
ated with the impulse response ofGi(λ,∆i), u =[
uTo , . . . , u

T
n−1

]T
andy =

[
yTo , . . . , y

T
n−1

]T
.

Proof: Follows from (6) by applying a Schur comple-
ment argument to the inequalies:

α ≥ fT f , δ2 ≥ dTd = XTX (9)

The main difficulty with the approach outlined above
is that the sets∆i are infinite dimensional. However,
since∆i are causal operatorsonly their firstnMarkov
parametersaffect the outputy. Thus, rather than hav-
ing to sampleBH∞, we only need to (i) sample the set
BHn∞, which can be efficiently accomplished using
Algorithm 1, and (ii) combine the samples1 . This ob-
servation leads to the following robust FDI algorithm:

Algorithm 2. Given n (noisy) output measurements
{y}n−1

i=0 and nominal and failure dynamicsG(λ,∆)i,
chooseN1 and generateNt(N1) samples{∆j(λ)}Ntj=1

from the setBHri using Algorithm 1.

0.- Setfmin =∞.

1 In the case of structured uncertainty, the same construction can
be used block–wise.



1.- For each∆j , solve the following convex problem
in f :

min‖f‖ subject to

[
δ2 X ′

X I

]
≥ 0

X = y −
[
TG

0,∆jo
+
∑

fiTG
i,∆j

i

]
u

2.- If ‖f‖ < ‖fmin‖ setfmin = f .
3.- Seti = i+ 1. If i ≤ Nt go back to step 1.

Remark 1.Let (ε, ν) be two positive constants in
(0, 1), and, for a fixed∆, denote byf(∆)min the
minimum norm solution to the LMIs (8). Then direct
application of Theorem 3.1 in (Tempoet al. 1996)
shows that ifN1 in Algorithm 1 is chosen to satisfy

N1 ≥
ln(1/ν)

ln(1/(1− ε))
, (10)

then

Prob
{

Prob
[
‖f(∆)min‖2 < ‖fN1

min‖2
]
≤ ε
}
≥ (1−δ),

(11)
wherefN1

min denotes the solution found by Algorithm
2. Roughly speaking, with confidence1 − δ, the al-
gorithm will find, with probabilty1 − ε, the solution
to Problem 2. Moreover this bound is independent of
the number of uncertainty blocks, their size and their
probability distribution.

Thus, by introducing an (arbitrarily small) risk of a
false alarm, we can substantially alleviate the compu-
tational complexity entailed in robustly detecting and
isolating faults in plants subject to structured uncer-
tainty and measurement noise. In addition, it can be ar-
gued that a purely deterministic approach to FDI could
be potentially overly optimistic, since the system will
be deemed to be operating under no-fault conditions
even if there exist asinglecombination of uncertainty
and noise such that the corresponding‖f‖2 = 0. On
the other hand, in such cases the approach proposed
here will indicate, (with probability close to 1) the
existence of a fault2 .

3.3 A Deterministic Convex Relaxation for Multiplicative
Uncertainty

-

- -
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Fig. 1. Setup for Robust Analytic FDI with multiplica-
tive uncertainty.

Consider the special case of Problem 2 shown in
Figure 1, where the nominal and failure dynamics

2 see also (Zhou 2000) for a similar argument used in the context
of probabilistic model (in)validation.
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Fig. 2. Jointly convex FDI setup

are subject tomultiplicative, unstructureduncertainty.
While the problem is still not jointly convex in all
the variables involved, a convex relaxation can be
obtained by considering the alternative setup shown
in Figure 2, where measurement noise is also affected
by the unknown error dynamics∆:

y = (I + ∆W )

[
(G0 +

r∑
i=1

fiGi)u+ d

]
(12)

When compared to the original setup shown in Figure
1, it can be easily seen that the only difference is
in the measurement noise level. Specifically, assume
that there exists a triple(f , d̃,∆) satisfying (12) with
‖d̃‖2 ≤ η̃

.= η
1+‖W‖`2→`2‖∆‖`2→`2

, and let(d .= (1 +

∆)d̃. Then the triple(f ,d,∆) satisfies

y = (I + ∆W )(G0 +
r∑
i=1

fiGi)u+ d (13)

and ‖d‖2 ≤ η. Thus, one can attempt to find a
solution to the original problem by searching for a
solution to the model (in)validation problem shown
in Figure 2, with noise level̃η. As we show in the
sequel this leads to a convex optimization problem. In
addition, one will expect that if‖∆‖ � 1 then this
approximation is not too conservative. This conjecture
will be substantiated in section 4.

Theorem 1.There exist a feasible tripe(f , d̃,∆) that
satisfies equation (12) if and only if there exists at
least an admissible vectorf , 0 ≤ fi ≤ 1 and a
finite sequenceq = {q0,q1, · · · ,qn} such that the
following set of LMIs hold:

A1(q) .=

X(q) (Tn
q)T

Tn
q

[
I
γ2
− (Tn

W )TTn
W

]−1

 ≥ 0

A2(q) .=
[
η2 YT (q)

Y(q) I

]
≥ 0

(14)
with:

X(q) .= (Tn
WTn

y )TTn
WTn

y − (Tn
WTn

y )TTn
WTn

q

− (Tn
WTn

q )TTn
WTn

y

Y(q) .=
[
Tn
y −Tn

q − (Tn
Go +

∑
i

fiTn
Gi)T

n
u

]
and the matricesTn

(.) are defined in Section 2.1.

Proof: From equation (12) we have that

Tn
z = Tn

W

(
Tn
y −Tn

q

)
, Tn

d = Tn
y −Tn

q −Tn
GTn

u

(15)



From Lemma 1, we have that there exists∆ ∈ ∆∆∆
mapping the input-output sequences(z, q) if and only
if

(Tn
z )TTn

z ≥
1
γ2

(Tn
q )TTn

q . (16)

Combining equations (15) and (16) and using Schur
complements, gives the first LMI in (14). The second
LMI is a simple restatement of‖d‖2 ≤ η2.

Remark 2.From the results above it follows that find-
ing minimum ‖f‖ such that (12) holds reduces to a
convex LMI minimization problem.

4. ILLUSTRATIVE EXAMPLE

In this section we illustrate the potential of the pro-
posed approach using a simplified model of the yaw
damper system of a jet transport(Shim and Sznaier
2003). The system under consideration is given by

y = (I + ∆W )(G0 +
3∑
i=1

fiGi)u+ d (17)

where

G0 =
1

D0(s)


−4.75s3 − 2.48s2 1.23s3 + 0.30s2

−1.19s− 0.56 +0.83s+ 0.42

1.15s2 − 2.00s 10.73s2

−13.73 +16.43s+ 10.83


G1 =

1

D(s)

 6.08s6 + 4.69s4 −1.57s6 − 1.65s4

+1.13s2 −0.59s2

1.80s4 + 9.63s2 −0.57s4 − 1.43s2


G2 =

1

D(s)

[
6.35s5 + 0.36s −1.21s5 − 0.26s

−1.47s5 + 4.69s 0.38s5 − 3.27s

]
G3 =

1

D(s)

[
3.03s3 + 0.086 −1.37s3 − 0.06

18.54s3 + 2.08 −4.46s3 − 1.55

]
and

D0(s) = s4 + 1.92s3 + 1.61s2 + 0.83s+ 0.16

D(s) = s8 + 2.55s7 + 3.76s6 + 4.16s5 + 3.18s4

+ 1.71s3 + 0.58s2 + 0.0826s+ 0.0006

Here the inputs to the system are rudder and aileron
deflections, measured in degrees, and the outputs are
yaw rate and bank angle. In order to apply our the-
ory, a discrete–time model of the system above was
obtained by using samplers and zero order holds with
a sampling time of0.1 seconds.

Assume that the only a priori information available
is that the nominal and failure dynamics are subject
to multiplicative model uncertainty with‖∆‖∞ ≤
0.1, leading to the block diagram shown in Figure 1.
Further assume that the energy of the measurement
noise is bounded by10% of the energy of the impulse
response of the nominal plant, and that the dynamics

of the actual plant (as opposed to the model used in
algorithm are given byGactual = (I + ∆̃)G with 3 :

∆̃ =
0.018
D∆

[
∆11 ∆12

∆21 ∆22

]
∆11 = 1.9z4 + 2.5z3 − 0.24z2 − 1.04z − 0.25

∆12 = 0.5z4 + 0.8z3 + 0.25z2 − 0.09z − 0.03

∆21 = 2.9z4 + 3.0z3 − 1.66z2 − 2.3z − 0.51

∆22 = 3z4 + 3.5z3 − 1.12z2 − 2.1z − 0.47

D∆ = z4 + 1.87z3 + 1.27z2 + 0.37z + 0.04
(18)

wherez = λ−1.

Table 1 and 2 show the results of several experi-
ments with simulated faults for the risk–adjusted and
convex relaxations respectively. For the risk–adjusted
relaxationNt = 1500 samples of the uncertainty
where used, which guarantees, with confidence 0.99,
a probability of 0.99 of finding the minimum‖f‖2
that explains the experimental data. In all cases, the
experimental data corresponded to 20 samples of the
impulse response of(I + ∆̃)Gf 4 , corrupted by noise
with ‖d‖2 = 0.50. As shown there, both relaxations
were able to establish the existence of a fault and to
provide a good estimate of its indicators. Similar re-
sults, omitted for space reasons, where obtained with
higher uncertainty and noise levels (both20%). In this
case, as expected, the risk–adjusted relaxation pro-
vided tighter estimates of the actual fault than the de-
terministic relaxation, but both procedures were able
to correctly identify the presence of a fault and esti-
mate its location.

5. CONCLUSION

In this paper we considered the problem of robust fault
detection and isolation for systems described by a pa-
rameterized fault model and subject to dynamic uncer-
tainty, entering the plant in an arbitrary way. In general
this setup leads to non–convex, NP hard problems. To
remove this limitation, we propose to pursue a risk–
adjusted approach, where in return for an (arbitrarily
small) probability of a false alarm one can obtain a
substantial reduction of the computational complexity
of the problem. As illustrated in the paper, the number
of samples needed for reliable fault estimation is rela-
tively small. Moreover, this number is independent of
the size or number of blocks of the uncertainty and its
actual probability distribution. Thus, it is feasible to
generate and store these samples off–line, leading to
further reduction of the computational complexity of
the problem that needs to be solved on–line.

3 This corresponds to a randomly generated uncertainty with
‖∆‖∞ ≤ 0.5.
4 Here Gf denotes the transfer function corresponding to the
failure mode under consideration.



Real Fault(RF) Mode RF Norm Estimated Fault(EF) Mode EF Norm
0.0 0.0 0.0 0.0 10−6*0.8263 10−6*0.9219 10−6*0.8964 10−6*1.5285
1.0 0.0 0.0 1.0 0.8362 0.1092 0.0643 0.8458
0.0 1.0 0.0 1.0 0.0451 0.8060 0.0103 0.8073
0.0 0.0 1.0 1.0 0.0257 0.0000 0.8610 0.8614

0.8452 0.7728 0.0015 1.1452 0.7645 0.6210 0.0479 0.9861
0.4513 0.2136 0.5628 0.7524 0.4033 0.1775 0.4733 0.6466
0.1021 0.7533 0.0256 0.7606 0.1322 0.5667 0.0371 0.5831

Table 1.Estimates obtained sampling the uncertainty, with‖∆‖∞ ≤ 0.1 and10% noise level

Real Fault(RF) Mode RF Norm Estimated Fault(EF) Mode EF Norm
0.0 0.0 0.0 0.0 10−3*0.0942 10−3*0.1022 10−3*0.0957 10−4*1.6879
1.0 0.0 0.0 1.0 0.8080 0.0839 0.0492 0.8138
0.0 1.0 0.0 1.0 0.0640 0.7820 0.0119 0.7848
0.0 0.0 1.0 1.0 0.0408 0.0000 0.8399 0.8409

0.8452 0.7728 0.0015 1.1452 0.7458 0.6099 0.0627 0.9655
0.4513 0.2136 0.5628 0.7524 0.3902 0.1449 0.4687 0.6268
0.1021 0.7533 0.0256 0.7606 0.1421 0.5460 0.0425 0.5658

Table 2.Estimates obtained using the deterministic relaxation, with‖∆‖∞ ≤ 0.1 and10% noise level.

Research is currently under way seeking to extend
these results to time–varying and classes of non–linear
systems.
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