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Abstract: We present a new method to plan minimum time trajectories for wheeled
mobile robots. The problem is known to be complex in particular when dynamics is taken
into account. Our approach is based on a simultaneous search for the robot path and the
time evolution on this path. The whole problem is formulated in such a way that all
geometric, kinematic and dynamic constraints are handled sequentially which makes
more effective the use of stochastic methods. Copyright © 2005 IFAC
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1. INTRODUCTION

Mobile robots are, in general, devoted to achieve
various tasks in large workspaces with a large
autonomy. This makes the motion planning phase
very important and requires enormous attention. This
importance is naturally reflected in the number and
the variety of research activities. In general efforts
are oriented towards two main topics: path planning
and motion planning. The former concerns the search
of a continuous sequence of configurations between
two limit configurations. The later concerns the time
history of such a sequence taking into account
kinematics and dynamics. Papers treating the first
topic are numerous while for the second they are
relatively few. All these works can be grouped
according to:

e the dimension of the robot environment;

e the model adopted for the robot;

e the optimization criteria;

e the method proposed.

Planning the robot motion in a 2D structured space
can be considered as the reference or basic problem.
Although it is relatively simplified, it is still complex
(Latombe, 1991; Yamamato, et al., 1999). Increasing
the space dimension intends generally to allow the
inclusion of irregular terrains. In this case, the
problem becomes more complex because of stability
complications (Siméon, 1991; Cherif, ef al., 1994).

Early works treated the problem of mobile robot
motion planning from a purely geometric point of
view (Cherif, et al., 1994). The principal aim was to
avoid collisions in a structured environment. These
works leaded to a large number of techniques of
diverse complexity and demonstrated that the
problem of motion planning for a Wheeled Mobile
Robot (WMR) is NP hard (Latombe, 1991). More
recently, due to the constant need to increase the
productivity in various industries, others approaches
have been proposed to solve the Minimum Time
Motion Planning Problem (MTMPP) for WMR while
considering kinematic constraints (David, et al.,
1994, Renaud and Fourquet, 1997; Jiang, et al. 1997).

It is clear however that dynamics is also important,
particularly in the case of high velocities or when
there is a need to compute correctly inputs of the
system control. Few are works that treat the MTMPP
while handling dynamics. In studies that consider
the WMR as a mass—point (Shiller, 1991), the
corresponding dynamic model might be insufficient
to describe the robot real behavior. Such models do
not take into account nonholonomic constraints that
are an essential characteristic of the WMR.

On the other hand, there are several works that model
the WMR as a multi-body system and adopt, in
general, a Hamiltonian formulation for the dynamics
coupled with several optimal control techniques such
as the phase plane method (Yamamato, et al., 1999).



However, this type of approaches suffers from the
fact that for any new constraint or new cost function
the whole problem formulation must be reviewed.

Here, we focus our interest on solving one of the
most important problems in mobile robotics: how to
plan trajectories while taking into account constraints
on:
e geometry (obstacle avoidance and bounds on
joint positions);
e kinematics (nonholonomic constraints and
bounds on joint velocities and accelerations,);
e dynamics (stability constraints and bounds on
joint torques).

The approach we propose here is an iterative process
that tries to improve the solution by a searching for
the robot path and, simultaneously, for the time
evolution on this path. The key idea consists of
defining two normalized scales: one for the path and
the other for time. With these scales, the problem can
be reformulated so that all constraints are treated
sequentially and a given cost function minimized by
a stochastic technique. The implementation of this
approach using, for example, a Simulated Annealing
(SA) algorithm allows treating complex situations
and leads to competitive results when compared to
those already published (Yamamato, et al, 1999).
An equivalent method for robotic manipulators has
been tested successfully (Chettibi and Lehtihet,
2002; Chettibi, et al., 2004).

2. DYNAMIC MODEL

The WMR considered in this study, can be defined as
a platform supplied with wheels and that is capable
of moving autonomously in a 2D plan environment.
The main part is a rigid chassis that is commonly
provided with electrically motorized wheels and
passive wheels (Fig. 1).

Fig. 1. A Wheeled Mobile Robot

Let R =(o, x, y, z) be the fixed frame of the world
coordinates and R' = (o', x’, y’, z’) the moving
frame attached to the platform. A configuration of
the WMR is completely defined by the vector

g=k v 0 q, q, ]” of n dimensions where:
® (x,y, @) specifies the position/orientation of the
main body in R ;
® ¢, is the vector of n, active-joints parameters,
* ¢, is the vector of n, passive-joints parameters,

so that: n=3+n,+n,

We adopt the following assumptions in modeling the
WMR system:

e There is no slipping between the wheel and the
floor. The robot cannot move sidelong to
maintain the nonholonomic constraint.

e The motion of the platform is confined to the
(O, x, y) plan and no translations are allowed
along the global z axis.

Nonholonomic constraints are formulated as first-
order non integrable differential equations containing
time-derivatives (i.e. velocity-level) of generalized
coordinates ¢ . They are, generally represented in a

compact form as follows (Campion, et al., 1996):
A(q)-4=0 1

Using Lagrange’s formulation, a dynamic model that
includes (1), can be written in the following form
(Guy, et al., 1996):

M(q)-j+c(q.9)=B(g) 1, +A (@)1 (2

where M(q) is the inertia moment matrix, ¢(q,q) is
the centrifugal and Coriolis vector force, B(q) is the
input transformation matrix, 7 is the vector of
Lagrange multipliers and 7, is the vector of active

joint torques.

3. PROBLEM STATEMENT
The mobile robot is required to move freely, without

following a specified path, from initial to final states
Xy and X , (Fig.2) given by:

Xo=[xw »w &l X;=k/ v 6]
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Fig. 2. Trajectory planning problem

In addition to the vector 7,(¢) of actuator efforts and
the final time 7', we must find the motion defined by
X()=[x(r) y@) 6(1)]" such as the initial and
final states are matched, constraints are respected and
a cost function is optimized.



The following boundary conditions inherent to the
achievement of the desired task must be taken into
account:

e Position/Orientation

{ X(0)=X,
(3a).
X(I=X,
e Velocity
X(0)=0 o
X(T)=0 '

When obstacles are present in the workspace, the
following constraints will hold during the motion:

C(X(t)) = false 0<t<T) (30).

The Boolean function C indicates whether or not the
robot at configuration X is in collision with an
obstacle.

Additional constraints that may have to be included
represent other physical limitations such as those
imposed on:

® qctive-joint velocities:

4| < g™ i=1...n, (4a),

® qctive-joint accelerations:

G (DS G0 i=1...n, (4b),

® active-joint torques:

T, (D ST i

Il
—_

ey Mg (4¢).

Of course, non—symmetrical bounds on the above
physical quantities can also be handled without any
new difficulties.

The goal function Fj to be minimized represents the
traveling cost between initial and final states. It is
generally an expression containing significant
physical parameters related to the WMR behavior
and also to the productivity of the system. For
simplicity, we will limit the discussion to the case of
MTMPP where Fy,; = T but the same method is still
applicable for other more general forms of the cost
function.

4. PROPOSED METHOD

At each iteration of the optimization process the
WRM motion X(¢) is defined in two main steps:

step 1 : specify the robot path X(1).
step 2 : specify the motion profile A(§) on this path.

The first parametric form X(A), A € [0, 1], describes
the geometry of the robot path in the (O, x, y) plane
while the second form ME), & € [0, 1], determines
the time evolution along this path. Here, § represents
anormalized time scale: § =1¢/T.

Hence, the problem is transformed to a parametric
optimization problem. One of the parameters is the
unknown traveling time 7. The other parameters are
two sets, Sp and S¢, of free discretisation nodes. The
set Sp is composed of Np control points in the robot
workspace (Fig. 3) while S¢ consists of N¢
collocation points in the (€, A) plane (Fig. 4).

With Sp, we can define a path X(A) using parametric
functions, such as B-spline, that takes into account
constraints (3a) and (3c). Note that 6 (A) is deduced
directly from x(A) and y(A) using the nonholonomic
constraint :

— X' (A)-Sin(0(1))+ y'(1)-Cos(B(1)=0  (5).
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Fig. 3. A path X(A) through N free control points.
With S¢, we can define a motion profile A(§) using,

for example, a clamped cubic spline interpolation
that takes into account constraints (35).

0
Fig. 4. A motion profile A(§) with N¢ free collocation
points.

The method adopted here uses a stochastic process
that scans simultaneously the available solution space
of both sets Sp and S¢ to propose candidate trajectory
profiles X(§) = X(M&)) for a global minimization of
Foj. Note that the generalized coordinate vector g
and its derivatives with respect to & are deduced
directly from X(&) using (1). Thereafter, active joint

torques 7,(&) are evaluated from (2).
4.1 Constraints

Given a candidate X(§), most constraints simply
translate to bounds on admissible values of the
optimal traveling time 7 of that candidate. Here,
constraints are conveniently grouped in three
categories (Chettibi and Lehtihet, 2002). They will
be used as a sequence of rejection tests applied
systematically on any proposed candidate.

The first category concerns geometric constraints.
They will not yield any restriction on Ty. For



example, in the case of the obstacle constraint (3¢),
only the path X(A) is actually relevant. Any
candidate X(A) that already infringes (3¢) will be
rejected early in the process of selection since it will
not lead to a feasible trajectory.

The second category concerns kinematic constraints.
They translate to an explicit lower bound on Tx. For
example, velocity constraints (4a) become:

max [q; (5)]
where T, = felol (6a).

- max
ai

Tx>T,

Acceleration and torque constraints (4 and 4c¢) when
treated in a similar way will yield two new lower
bounds noted, respectively, T4 and 7 :

Tx =2 Ta (6b),
Ix 2 T; (6¢).

The optimal traveling time Ty of candidate X(§) is
therefore given by Tx = max(7y, T, T7).

4.2 Details of implementation

The method is initialized with N,, milestones points
in the workspace. These points, illustrated as crosses
in figure 5, can be found by cell decomposition,
visibility graph or probabilistic roadmaps methods
(Latombe, 1991; Kavaraki, et al. 1996). Their role is
essentially to define a corridor between obstacles.
The convergence of the method does not depend on
the precise position of these points but calculations
will be restricted to the selected corridor. Hence, the
method will need to be reinitialized using another set
of milestone points to test a different corridor.

Fig.5. Milestone points, trial path and final path.

Indeed, once a corridor is chosen, it will constitute a
search space in which elements of set S, will be
randomly selected to produce trial paths X(A). One
such a path is shown in Figure 5. Although, initially
this path might present undesirable distortions, they
will be attenuated progressively as the process
converges. Here, the optimization is performed using
a simulated annealing method which is known for its
efficiency when exploring large solutions spaces
(Hajek, 1985, Kirkpatrick, ef al. 1983).

5. NUMERICAL EXAMPLE

This section gives numerical results concerning
minimum-time trajectories for a WMR constituted of
a platform and two independently driven wheels
(Yamamoto et al., 1999). The centre of gravity is in
the middle of the wheel axis and the inertia moment
of the platform is considered only around z’ axis of

the WMR coordinate system R ’.

Table 1: Parameters of the platform

L=075m m;=500kg [,;=26.04 kgm?
b=2.00m my=1.00kg I[,=0.0025kg.m?
r=20.10m 1, = 0.0050 kg.m?

my, my are the mass of the platform and the wheel, 7,
is the inertia moment of the platform around z’-axis,
I, and /, are inertia moments of the wheel around z’-
axis and y’-axis in the R coordinate system
respectively, r is radius of the wheel. The platform is
considered as a (2Lxb) rectangle.

Constraints on driving torques are given as follows:

~1.0<7,7,<1.0  (Nm)

5.1 Problem 1

The workspace consists of a 24mx24m flat floor
with three obstacles (Fig. 6). The task to be achieved
is characterized by null limit velocities. The motion
starts at X, = (3, 3, 0) and ends at X,= (21, 21, 7/6).

Numerical solutions calculated for two different
corridors are shown in Figure 6. The corresponding
time history of joint torques is illustrated in Figure 7.
These results are quite similar to those given in
(Yamamoto, et al. 1999). The calculated traveling
times are of the same order (17.82 vs. 18.94 sec and
18.06 vs. 18.73sec).

For this problem we have adopted for X(1) a fourth —
order B—spline model with N, = 6 control points and
for (&) a clamped cubic spline model with N = 4
interpolation points. The required runtime was about
4 minutes on a 2.4 GHz P4.

5.2 Problem 2

This problem concerns another example given in
(Yamamoto, ef al. 1999). The workspace consists of
a 36mx36m flat floor with five obstacles (Fig. 8).
The motion begins at (3, 3, 0) and ends at (33, 33,
1/4). Four different candidate corridors have been
tested. The best solution is shown in Figure 8a. The
motion is executed in 22.71 sec (vs. 23.54 sec in the
cited reference). The time evolution of joint torques
is depicted on Fig.8h.



T =17.82 sec.

Fig. 6a : Simulation result
(Problem 1, path a)

T =18.06 sec.

Fig. 6b : Simulation result
(Problem 1, path b)

T =18.73 sec.

Fig. 6b°: Simulation result (Problem 1

path b (Yamamoto, et al. 1999)
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Fig. 7a: Time evolution of joint
torques (path a).

Fig. 7b: Time evolution of joint
torques (path. b).

Fig. 7b": Time evolution of joint torques
(path. b) (Yamamoto, et al., 1999).

T=22.71 sec.

Fig. 8a. Simulation result
(Problem 2).

6. CONCLUSION

We have proposed a versatile motion planner for
wheeled mobile robots. The problem treated here
consists of defining the optimal time history of a
continuous sequence of configurations between two
limit configurations, while considering kinodynamic
constraints. The proposed method is an iterative
process that tries to improve solutions by searching
simultaneously for the robot path and for the time
evolution on this path. The use of parametric
functions to model the path and the motion
transforms the MTMPP, which is a complex optimal
control problem, to a constrained parametric
optimization problem. Furthermore, all kinodynamic
constraints have been conveniently translated to
bounds on admissible values of the traveling time
and have been treated sequentially.  Additional
constraints can be handled similarly without inducing
any modification of the method.

Fig. 85 : Time evolution of
joint torques (Problem 2).

T =23.54 sec.

Fig. 8¢ : Simulation result
(Problem 2) (Yamamoto, et al., 1999).

Numerical results obtained here are comparable to
those already published for the MTMPP. In contrast,
our approach is easily extensible to problems
involving other types of cost function that include
energy, actuator efforts, etc. In fact, the same method
is applicable even in the case of discontinuous
dynamic models (e.g.: frictions). These extensions
will be treated elsewhere.
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