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Abstract: A real data set from model mixtures water treatment is considered to be 
analyzed trough this observer based on dynamical neural networks and sliding mode-like 
design. The residual sign term is suggested to be used to reduce the output external noise 
effect in the estimation process and the dynamic neural network is employed to 
reconstruct the state dynamics of the system under this study. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Ozone has been used intensively in water and waste 
water treatment, disinfection, bleaching and industrial 
oxidation processes (Poznyak et al., 2003). The 
practical applications are typically based on the very 
high oxidizing power of ozone and its decomposition 
products (Gordon et al., 1999). Ozonation of water 
and waste water is typically carried out in semibatch 
reactors by dispersing gas, which contains dissolved 
ozone into the liquid phase. Mass transfer between 
the phases in question can be described using many 
mathematical models (Bin and Roustand, 2000) and 
(Poznyak and Vivero, 1998). Ozone absorption in 
aqueous solutions is accompanied by chemical 
reactions of different kind and nature. This problem 
has been widely discussed in literature (Gilbert et al., 
1999) and the film theory of mass transfer can be 
applied for solving the problem. Moreover, it’s 
important to know how the presence of the chemical 
reaction has a relevant impact on ozone mass transfer 
process. 
 
 
1.1 Precedents 
 
A lot of efforts have been devoted to analyzing of a 
certain type of ozone reactions in liquid phases with 
different organic contaminants (Razumovskii and 

Zaikov, 1994), (Poznyak et al., 2003), and (Poznyak 
et al., 1977). Many modern chemical problems 
demand the employment of few control approaches, 
that can provide more detailed understanding of 
complex chemical phenomena in total. Although the 
basic concepts on identification theory are quite 
straight forward, it turns out to be often most time 
consuming step in the design and implementation of 
advanced control technologies.  
 
The identification problem for some classes of 
chemical kinetic models just give a poor example of 
such situations, which can be abstracted to the 
problem of a class of nonlinear systems with non-
complete on-line measurable variables (Garcia and 
D’Atellis, 1995), (Knobloch et al., 1993). Available 
observations provides by a ozone sensor which 
supplies the current information in continuous time 
about the current ozone concentration in the gas phase 
of the reactor output. The situation which is know, 
differs in many aspects from standard approaches, 
commonly used in identification theory: usually 
mathematical models are assumed to be completely 
measurable. Among them the assumption that all 
states are completely accessible is usually accepted. 
In practice, this assumption doesn’t seem to be 
realistic. That’s why the observation process (or state 
estimation) seems to be very important for effective 
control design.  



     

 
Several approaches dealing with state estimation 
problem are widely used in practical applications. For 
instance, there exists the adaptive observation process 
(Michalska and Mayne, 1995), Lyapunov-like 
observers approach (Zak and Walcott, 1990), high 
gain observer (Giccarella et al., 1993), optimization-
based observer (Nicosia and Tornambe, 1989), 
reduced order nonlinear observers (Krener and 
Isidori, 1983) and others.  
 
Artificial neural networks have showed good 
behavior when nonlinear systems (affected by some 
kind of external noises or perturbations) are trying to 
be identified. When a mathematical model is 
incomplete or partially known, the DNN approach 
(Poznyak et al., 2001) provides an effective 
instrument to attack a wide spectrum of control 
problems (such as identification, state estimation, 
trajectories tracking, etc.). Recently, the design of 
control functions under heavy uncertainty conditions 
is one of the main problems of the modern control 
theory. One of the common approaches is the variable 
structure control approach (VSC), dealt with the 
sliding mode control (Utkin, 1992) is widely used due 
to its insensitivity to external and internal 
disturbances.  
 
Variable structure control offers significant potential 
advantages: good transient behavior, global 
exponential stability, (no modeled) disturbance 
rejection capability, insensitivity to plant nonlinearity 
or parameter variations and remarkable stability and 
performance robustness. In order to exploit these 
strategies, a suitable estimate of the states should be 
constructed for use in the control function developed. 
Despite fruitful research in the variable structure 
control theory a few authors have considered the 
application of the main principles of sliding mode 
control to the problem of observer design. For 
deterministic system the earliest work in this field has 
appeared in Utkin (1992), the approach described in it 
is similar to that proposed by Slotine (1984).  
 
The design and control of ozonation reactions have 
been the challenging tasks mostly, because of the 
inadequacy of on-line sensors with fast sampling rate 
and small time delay and the complex nonlinear 
interactive behavior of ozonation reaction. For these 
reasons, it can be assumed that control techniques 
will be used in order to avoid these limitations. On 
the other hand, there are not adequate mathematical 
models of ozonation reaction when it is driven at 
basic pH (≥ 7.0), because here two different 
mechanisms are present: direct attack by molecular 
ozone to the organic compound and indirect reaction 
with OH radicals.  
 
Then the problem to solve is as follows: based on on-
line experimental data (ozone gas concentration on 
the reactor output), to construct the immeasurable 
dynamics (using a DNN-observer) of contaminates 
decomposition at different pH (2.0, 7.0 and 12.0) 

(Poznyak et al., 2001) and compare with experimental 
data acquired with classical techniques for model 
mixtures.  
 
The paper is outlined as follows. In section 3, the 
class of nonlinear systems, which is going to be 
treated along this paper, is introduced. The basic 
assumptions concerning the behavior of the 
considered system and external disturbances are 
presented too. The main result in this work is 
developed in section 2 also, it gives an upper bound 
for the averaged estimation error as a function of an 
uncertainty level in the output measures (given by the 
features of the ozone sensor) as well as some a priory 
known characteristics of the considered model. 
Section 3, where the numerical example dealing with 
ozonation reaction dynamics is considered, concludes 
this study. 
 
1.2 Ozonation Model Description 
 
Ozone is capable to oxidize a wide variety of organic 
materials in aqueous solution. The oxidation process 
by ozone involves the phenomenon of mass transfer 
with simultaneous chemical reaction. Building on 
results of (Lisitsin et al., 1976), (Poznyak and Vivero, 
1998), dealing ozonation with ith-component model 
mixture, we can write the following system of 2N +  
differential equations: 
 

0

max

1

:

( 1, 2, , )

gas
gas gas gas
t t sat tgas gas

i
t sat t i t t t t

i
i i t t
t liq

d c c c K Q
dt
d Q K Q k c Q Q Q Q
dt

k c Qd c i N
dt v

ω
υ υ

⎡ ⎤= − − ∆⎣ ⎦

= ∆ − ∆ = −

= − =

∑

…

  (1) 

 
Where gas

tc  [mole/L] is the ozone concentration in the 
gas phase (this is ozone which doesn’t react with 
organic compounds dissolved in the solvent), 

tQ  
[mole] is the ozone dissolved in liquid phase, i

tc  
[mole/L] is the organic compound concentration at 
time t  for the ith-component in the model mixture 
and N  is the number of contaminants in the reactor. 
The parameters, involved in the ozonation model 
description, have the following physical sense: gasυ  
[L] is the volume of gas phase which is assumed to be 
constant, gasω  [L/s] is the input gas flow, satK  [1/s] is 
the saturation constant, maxQ  [mole] is the maximum 
of ozone being in the saturated liquid phase under the 
given conditions,  

ik  [L/(s*mole)] is the ith rate 
constant of ozone with the organic compound, liqv  [L] 
is the liquid phase volume. Notice that for this work, 
all components can not be available to measure on-
line, the only one measurable state of this process is 

gas
tc . 

 
 
 



     

2. OBSERVER BASED DYNAMIC 
 NEURAL NETWORK 

 
To develop an estimation technique based on neural 
networks and sliding mode technique, the following 
facts should be taken into account:  
 

a. The ozonation reaction system is stable.  
b. The control functions for ozonation are 

bounded. 
 
Both assumptions seem to be natural for the 
ozonation process under consideration. Take into 
account the following class of nonlinear systems 
including the ozonation mathematical model given by 
(2):  
 

( ) ( )
( )
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where n

tx ∈ ℜ  is the state vector of the system, 
m

tu ∈ ℜ  is a given control action, p
ty ∈ ℜ  is the 

output signal which is assumed to be measurable at 
each time, : p nC ×ℜ  is a priory known output matrix 

( ), , : n m n
t tf x u t ℜ × ℜ × ℜ → ℜ  is an unknown vector 

nonlinear function, describing the system behavior 
and satisfying some conditions about existence and 
uniqueness for the solution of (2). The vectors 

1,tξ  and 

2,tξ  represent external partially known bounded 

perturbations 
,

i
i t i

ξ
ξ

Λ
≤ ϒ ∞≺  for the state and output 

dynamics, respectively. The suggested sliding mode 
neural-observer has the following structure (Poznyak, 
2004) 
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Here the vector ˆ n

tx ∈ ℜ  is the state of the neural 
network, m

tu ∈ ℜ  is its input. The matrix n nA ×∈ ℜ  is 
a stable fixed matrix which will be specified below. 
The matrices 1

1,
n s

tW ×∈ℜ  and 1
2,

n t
tW ×∈ℜ  are the 

weights of the output layers. 2
1,

s n
tV ×∈ ℜ  and 

2
2,

t n
tV ×∈ℜ  are the weights of the internal hidden 

layer. 1K  is the gain matrix for the sign term. The 
activation functions for each neuron in the output 
layer ( )σ i  and in the hidden layer ( )ϕ i  are selected 
as sigmoid functions:  
 
The initial conditions are fixed by the ozonation 
reaction features, based on the available data about 
the experiments. Now, at this point we suppose that 
the neuro-observer fulfills the following:  
 

Assumption A1: There exists a stable matrix A  and a 
positive parameter δ  such that the following matrix 
Riccati equation has a positive solution  TP=P >0 : 
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The weights matrices of the considered DNN-
observer are adjusted according to the following 
differential equations (Learning laws) for external 
layer: 
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Where: 
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Based of the neuro-observer structure and the 
assumptions given above, the next fact can be 
formulated.  
 
Theorem 1 If the nonlinear system given by (2) 
satisfies the assumptions given below, and the neural 
observer given by (3) satisfies the assumption (A1) 
too, using the learning laws (5), then the following 
upper bound for the averaged estimation error holds: 
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Comment If the external disturbances for state and 
output dynamics are absent, then we guarantee that 
the estimates converge asymptotically to their real 
states. 
 

3. ILLUSTRATIVE EXAMPLES 
 
3.1 Example 1 (with data generated by the ozonation 
mathematical model) 
 
Using the ozonation reaction mathematical 
description (1) to generate the simulated data set of 
ozonation variables, its possible to apply the neural 
observer (Fig. 1) given in (3) to reconstruct the 
organics decomposition dynamics based only in the 
measurable data gas

tc . 
 

 
Fig. 1 Neural Observer structure. 
 
An illustrative case is studied now: the model mixture 
( 3 3

*1 21.3 10 , 2.5 10 L
mol sk k= × = × ) of two organics 

(phenol and 2-chlorophenol) is dissolved in liquid 
phase, and their decomposition dynamics have been 
calculated (Figs. 3 and 4) using the observer based on 
the measurable online data ( gas

tc ) (Fig. 2). The time 
evolution given by this example shows how the 
neural network (

11 123.6, 0,a a= − =  

21 223.2, 9.9,a a= = −  [ ]1,2 0.8, 3.2ijW ∈  and 

[ ]1,2 0.3, 0.8ijV ∈ ) reaches the dynamics generated by 
the ozonation mathematical model.  
 
This process is complete in two stages, the first one is 
known as learning phase when the neural network has 
its adaptation behavior (t ≤ 20 min.). The second age 
is given by an exact correspondence between the 
neural network and the ozonation dynamics. 
Obviously the Ct gas time evolution is identified 
based exactly on available data, but in the 
contaminants case, they are reconstructing based on 
inexactly data but on neural network with observer 
structure. 
 

 
Fig. 2 gas

tc  estimation given by the neural observer 
suggested using data given by the mathematical 
model. 

 

 
Fig. 3 1

tc  estimation given by the neural observer 
suggested using data given by the mathematical 
model. 

 

 
Fig. 4 2

tc  estimation given by the neural observer 
suggested using data given by the mathematical 
model. 

 
The performance index related with the error 
estimation process has a fast decrement (Fig. 5). This 
portrait implies a real converge between real states 
and delivered by DNN. 
 



     

3.2 Example 2 (with real data simulations) 
 
Two different model mixtures were reacted with 
ozone during 50 minutes. The data obtained with a 
ozone sensor were analyzed in a Personal Computer. 
Both data series were treated with the neural observer 
using the contaminants concentration given by a high 
performance liquid chromatography (HPLC) without 
the use of any mathematical model. 
 

 
Fig. 5 Error function time evolution between the 

model dynamics and the DNN approach for two 
contaminants.  

 
Material and methods 
 
The ozonation of phenols solution (phenol, 4-
chlorophenol and 2,4 dichlorophenol) with the initial 
concentration (50 mg/L), was carried out in a 
semibatch reactor (0.5 L) using an ozone generator 
"AZCO" with the initial ozone concentration 25 mg/L 
and the gas flow 0.5 L/min. The measurements of 
ozone in gas phase at the output of the reactor was 
done with an ozone sensor model BMT 930, 
connected to a PC in order to construct the ozonation 
reaction experimental curve in Matlab. Different 
series of ozonation at neutral initial pH (7.0) and 
basic pH (12) were studied. In figure (Fig. 6) the 
schematic diagram of ozonation apparatus is shown. 
 

 
Fig. 6 Ozone real system using in the experiments at 

different pH’s. 
 
 

Analytical methods.  
 
To verify the quality of the obtained estimates, the 
aqueous samples were analyzed by HPLC. The HPLC 
analysis was made a liquid chromatography Perkin-
Elmer series 200 coupled with a automatic UV/VIS 
detector with a chromatography column Nova Pack 
C-18, 250*4.6 mm with a mobile phase of water: 
acetonitrile: phosphoric acid mixture (50:49:1) with 
the flow rate of 0.8 mL/min. The corresponding 
organic compound concentration was measured in 
different reaction times, in order to use it to compare 
with the decomposition dynamic generated by the 
observer. Applying the suggested DNN-observer 
containing the additional sign correction term, we 
obtain (see Fig. 8) a faster convergence of the state 
estimation error which turned out to be better than the 
one obtained in (Poznyak et al., 2001). Even more, 
when some external disturbances (as ozone 
concentration measurement noises) (Fig. 7) are 
presented, this estimator converge into a bounded 
zone around the real state time dynamics, lesser than 
those given in (Poznyak et al., 2001) for example. 
 

 
Fig. 7 Comparison of the experimental gas

tc  (+) and 
DNN behavior of the two organic compounds 
decomposition reaction (phenol (1), 2-
chlorophenol (2)) at pH=7.0. 

 

 
Fig. 8 Comparison of the experimental 1

tc  (+) and 
DNN behavior of the organic compounds 
decomposition (phenol ) at pH=7.0. 



     

The measured gas phase ozone concentration was 
reached so fast, meanwhile the continuous portrait for 
organic compound concentration coincides with the 
data obtained in experiments. As in the mathematical 
model case, the performance index is calculated as 
the average integral for error signal for two different 
observers (Fig. 9): linear term (solid) and sign term 
(dashed). 
 

 
Fig. 9 Error function time evolution between the 

model dynamics and the DNN approach for two 
contaminants and two different observers: linear 
error correction term (solid) and sign error 
correction term (dashed). 

 
4. CONCLUSIONS 

 
The treated approach is shown to be able to guarantee 
a good state estimation if the suggested DNN-
observer with sign correction term is applied. So, the 
sign terms provoke more estimation quality with 
respect to a standard observer with a linear correction 
term. On the other hand, the theoretical analysis 
shows how we may improve (to make lesser) the 
upper bound (6) for the estimation error varying the 
involved free parameters. 
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