

A PETRI NET-BASED DEADLOCK CONTROL POLICY FOR FLEXIBLE ASSEMBLY SYSTEMS

 Naiqi Wu, MengChu Zhou*, and Elzbieta Roszkowska#

Dept. of ME, Guangdong Univ. of Tech., Guangzhou 510090, P. R. China
*Dept. of ECE, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
#Institute of Engineering Cybernetics, Wroclaw Univ. of Tech., ul. Janiszew skiego

11/17, 50-372 Wroclaw, Poland

Abstract: This paper presents a Petri net-based method for deadlock control in flexible
assembly systems (FAS). Instead of a process-oriented modeling method, a
resource-oriented Petri net modeling method is used. A new control policy is thus
formulated and proved to outperform the existing one in the literature. The deadlock
problem in FAS is often more difficult since deadlock can arise from improper base
component flow and part flow, as well as ill-synchronized assembly operations.
Copyright© 2005 IFAC

Keywords: Petri net, assembly system, deadlock avoidance, and modeling and analysis

1. INTRODUCTION

Deadlock resolution in automated manufacturing
systems (AMS) has been widely studied, for example
(Zhou and DiCesare, 1991; Ezpeleta, et al., 1995;
Banaszak and Krogh, 1990; Lawley, 1999; Fanti and
Zhou, 2004). Recently, the deadlock problem in
another AMS class characterized by non-sequential
resource requirement became a hot topic (Fanti, et al.,
1997; Hsieh, 2004; and Roszkowska, 2004). Flexible
assembly system (FAS) is such a system. In FAS,
parts need to be mounted on base components of the
products. Often, bases and pallets are presented and
delivered separately with parts. Both bases and parts
take spaces in the assembly process. They cannot be
finished without each other. Fanti, et al. (1997) and
Hsieh (2004) studied the deadlock avoidance problem
in FAS by using digraphs and Petri net, respectively.
An assembly process is realizable if and only if there
exists a feasible execution sequence (Roszkowska
and Wojcik, 1993). By using Petri nets, they studied
FAS with fork/join material flow, and proved that the
realizability problem is NP-complete and it is
NP-hard to find the maximum permissive deadlock
avoidance policy. A control policy is proposed based
on buffer space reservation (Roszkowska, 2004). This
paper studies the same problem. Resource-oriented
Petri net (ROPN) (Wu and Zhou, 2001; 2004a) is
used to model it. An algorithm to calculate the
realizable resource requirements and deadlock

avoidance control policy are presented.

2. A FLEXIBLE ASSEMBLY SYSTEM

An FAS in Fig. 2.1 is adopted from (Roszkowska,
2004). It has two robots r1-2 and three workstations
w1-3. There are an input buffer b0 and output buffers
b1 for w1, b2 for w2, and b3 for w3. Between them, b4
can be accessed by w1 and w2, and b5 by w2 and w3.
The robots handle the transport of materials from/to
system input/output and between buffers. r1 delivers
trays with parts and unpalletized subassemblies,
while r2 handles pallets with base. In the assembly
process, trays with parts and subassemblies are held
in b4 or b5, and pallets with base are put onto b0-3.
When a workstation performs an operation, it may
take the parts in a tray at b4 or b5 and mounts them
onto the base in b0-3. Notice that workstations
themselves cannot hold any component.

A and B-products are assembled concurrently with
their assembly processes in Fig. 2.2, where “tray”
denotes trays with parts, and “base” denotes base
components. Take A-part as an example. After r1
takes a tray with parts to be mounted onto the base
into b4, r2 transports a base into b0, then w1 mounts
the parts in b4 onto the base in b0, and the finished
one is moved into b1, while the tray with other parts
remains in b4. Then r2 can deliver the base into b2 and

w2 performs an operation on it, and after that it
remains in b2. It can then be delivered into b3 by r2. If,
at the same time, the tray in b4 is delivered into b5 by
r1, and other parts from the central storage are
released into the system and put into b5 by r1, then w3
is ready to perform its assembly. After that, the
finished product remains in b3 and the tray in b5,
respectively. They are ready to exit the system and
the buffer spaces are then released. When w3 does its
assembly, it takes two parts from b5, one is delivered
to b5 from b4, and the other from the central storage.

r1

W1

b0 b1

W2

b2

b4 b5

W3

b3

r2
Fig. 2.1. An FAS (Roszkowaska, 2004)

r1

W1

b0

b1

W2

b2

b4

b5

W3

b3

r2

A-base A-
tray

b4

r2

b2

r2 r1

b5

b3

r2

r1

B-trayB-base

b5b3

W3

b2

b2

W2

b3

b0

W1

b1 b4

b4

b4

r2

r1

r2 r1

r2

r2

r1

(a) (b)

2

r1

Fig. 2.2. The assembly processes of two products

3. MODELING BY ROPN

To avoid deadlock in FAS, the mechanism of
dynamic resource allocation should be modeled. The
FAS is modeled in (Roszkowska, 2004) by a
process-oriented PN, where an operation place is
introduced for each operation. This paper will model
it by ROPN. It models each resource by only a single
place and uses no operation places. All assembly
routes are modeled via token flows.

Finite Capacity PN: Petri nets are powerful in
modeling the behavior of resource allocation.
Because the resources are limited in FAS, a finite
capacity Petri net is an ideal choice to model them.
The concept of PN presented here is based on (Zhou
and Venkatesh, 1998). A finite capacity PN is a
directed graph PN = (P, T, I, O, M, K) where 1) P =
{p1, p2, ..., pm} is a finite set of places; 2) T = {t1,
t2, ..., tn} is a finite set of transitions, P ∪T ≠∅, P
∩T = ∅; 3) I : P × T →N is an input function where

N={0, 1,2, …}; 4) O: P × T → N is an output
function; 5) M: P →N is a marking representing the
numbers of tokens in places with M0 denoting the
initial marking; and 6) K: P → {1, 2, 3, …} is a
capacity function where K(p) represents the maximal
number of tokens that place p can hold at a time.

The preset of transition t is the set of all input places
to t, i.e., •t={p∈P: I(p, t) > 0}. The postset of t is the
set of all output places from t, i.e., t•={p∈P: O(p, t) >
0}. Similarly, p’s preset •p={t∈T: O(p, t) > 0} and
postset p• ={t∈T: I(p, t) > 0}.

Definition 3.1: A transition t∈T in a finite capacity
PN is enabled if for all p ∈P,

M(p) ≥I(p, t) (1)
and K(p) ≥M(p) - I(p, t) + O(p, t) (2)
If a transition is enabled, it can fire. Firing an enabled
transition t in marking M yields

 M'(p) = M(p) - I(p, t) + O(p, t) (3)

Definition 3.1 means that t is enabled and can fire if
all the places in •t have enough tokens and all the
places in t• have enough free spaces. Thereafter,
when condition (1) is met, t is said to be
process-enabled. When condition (2) is met, t is
resource-enabled. Thus, t is enabled only if it is both
process and resource-enabled. A sequence of firings
results in a sequence of markings. Mi is said to be
reachable from M0 if there exists a sequence of
firings that transforms M0 to Mi. The set of all
markings reachable from M0 is denoted by R(M0). A
place p is said to be full if M(p) = K(P). A transition
in a PN is live if it can fire at least once in some
firing sequence for every marking M reachable from
M0. A PN is live if every transition is live. The
liveness of a PN assures that all events or activities in
the model can happen. It implies the deadlock-free
operation of an FAS if its PN model is live.

(a) (b)

ptp

t1 t2

t3 t4

t5
r

t

p1

p2

(c)
Fig. 3.1. PN models for resources

Models for Resources: Buffers are different from
workstations and robots. The former is called
H-resource and the latter G-resource. An H-resource
is modeled by an H-place as shown in Fig. 3.1(a). A
token in it represents a part occupying a space in the
buffer, no matter whether it is just sitting there or
being processed. Its self-loop transition, i.e., t5,
represents assembly. A G-resource is modeled by a
G-place in Fig. 3.1(b). Unlike an H-place, a token in
it represents that the G-resource is available. Firing t
in Fig. 3.1(b) implies that the resource performs an
operation. After its firing, the token comes back and
the resource becomes available again.

PN Models for Individual Products: The first basic
operation is material delivery by robots. It can be

modeled by a G-resource model in Fig. 3.1 (c). Firing
t implies a part moved from p1 to p2 by r.

There are four situations for the operations performed
by a workstation as modeled and explained in Fig.
3.2. Place w models a G-resource and others model
H-resources. These PN models are called primitives.
Consider Fig. 3.2(d). It indicates that when the
assembly is completed the base and part still occupy
the buffer spaces. However, if this operation is the
last one for a product, then the completed product can
be moved away and will no longer occupy buffer
spaces. Thus, this model becomes Fig. 3.3 (b).

w t

p (Base)
w t

p1(Part)

p2 (Base)

w t

p1 (Base)

p2 (Part)
p3

w t

(a) (b)

(c) (d)

p1 (Base)

p2 (Part)

Fig. 3.2. PN primitives: (a) w processes a base in p;

(b) w assembles all the parts in p1 to base in p2; (c)
w assembles some parts in p2 to base in p1 and
moves it to p3; and (d) w assembles some parts in
p2 to base in p1, after that they remain in p1 and p2.

w

t

p1 p2

w t

p1

p2

(a) (b)
Fig. 3.3. PNs for regular and last assembly operations

b0

b1

b4

b2

b3
b5

p0

t1 t2

t3

t5 t6

t8

t9

t10

(a) (b)

3

b5

b2

b3

b1

b0

b4

p0

t11t12

t13

t14

t15

t16

t17

t18

t20

3

α

α

Fig. 3.4. Subnets for assembling products A and B

By using Fig. 3.1-3, we present ROPN for individual
products. For easy understanding, we use bi, i = 0,
1, …, 5, to name the places corresponding to buffers,
w1-3 for three workstations, and r1-2 for two robots.
Place p0 represents the central storage for FAS, which
hosts all the raw and final pieces. It is shown in (Wu,
1997) that by modeling the G-resources in this way
deadlock resulting from processes performed by
G-resources can be eliminated. Thus, in the sense of
deadlock avoidance, these G-places and their

associated arcs can be removed from the model. In
this way, the PNs for assembling products A and B
are obtained as shown in Figs. 3.4 (a) and (b) named
A and B-subnets for short.

ROPN for the Whole System: We can obtain the
ROPN for the whole system by merging the PNs for
the individual products (Wu and Zhou, 2001). The
union of the two subnets in Fig. 3.4 leads to Fig. 3.5.
We use solid, dashed, and bold-solid lines to denote
the individual part flows for products A and B, and
shared one, respectively.

b0

b1

b4

b2

b3

b5

p0

t1
t2

t3

t5 t6

t8

t9

t10

3

3

t14

t16

t15

t12

t17

t20

α

Fig. 3.5. The ROPN for the whole system

The ROPN obtained is compact, but cannot describe
the material flow exactly. For example, when a token
is in b2, one may not know which of t8, t16, or t17 it
enables. This problem can be solved by introducing
colors into ROPN resulting in colored ROPN
(CROPN). When we obtain the ROPN by merging
the subnets we allow only one transition between two
places and in the same direction, so some transitions
come from only one subnet, others are from multiple
subnets. If t∈ T is from a single subnet, we call t a
nonshared transition. If it is from k≥2 subnets, we
call it k-shared. For example, t1 and t20 are nonshared,
but t2-3 are 2-shared.

Definition 3.1: C(ti) = {ci} is the only color for a
nonshared transition ti∈T, and C(ti) = {ciA, ciB, …, ciK}
for a multiple-shared transition.

A multiple-shared transition represents the assembly
of multi-products. The assembly of different products
is distinguished by the transition’s colors.

Definition 3.2: If ti∈pi•, the tokens in place pi
enabling ti have the color fi associated with color ci.
In Fig. 3.5, t1, t5, t6, t8, t10, t14, t15, t17, and t20 are
single-colored, but t2, t3, and t9 have two colors
named as c2A and c2B, c3A and c3B, and c9A and c9B,
respectively. For example, if there is a token in b1
representing an A-base with color fAB2, then t5 with
color c5 can fire, but if it represents a B-base with
color fBB4, then t20 with color c20 can fire. Transition t3
has two colors, when there is a token in b0
representing an A-base with color fAB1 and an A-part

in b4 with color fAP1, t3 can fire with color c3A. Note
that all the tokens in p0 should have colors. For
simplicity, we just put α in p0 to indicate α tokens.

The color of a token may change. However, such
change occurs only when an assembly transition fires.
In Fig. 3.5, in p0, color fAB1 is used for a token
representing an A-base enabling t1, fAP1 for an A-part
enabling t2, fAP3 for an A-part enabling t9, fBB1 for a
B-base enabling t12, fBP1 for a B-part enabling t9, and
fBP2 for a B-part enabling t2. When a token with color
fAB1 enters b0 by firing t1, and a token with color fAP1
comes to b4 by firing t2 with color c2A, these two
tokens then enable t3 with color c3A. After firing t3,
their colors change into fAB2 and fAP2, respectively.

4. REALIZABLE RESOURCE REQUIREMENT

Given a set of product types to be processed in FAS
concurrently, the set of buffers with their capacity,
the FAS layout, and product routes, can each
operation be executed at least once? This problem is
called realizability problem that is NP-complete
(Roszkowska, 2004). This implies that to find a
minimal realizable resource requirement (RRR) is
NP-complete. However, RRR is needed as a
necessary condition for deadlock control. This paper
intends to find a simple algorithm for RRR. To
complete the assembly of a product, its base must
first be released into the system. Nevertheless, RRR
can be reduced if a part to be mounted onto a base is
released into the system just before FAS needs it.

Definition 4.1: Assume that in CROPN of FAS, ∃t, ∋

t = {p0}, pe ∈t , and ta ∈pe , where ta is an
assembly transition with color c. To fire ta, it requires
tokens in pi, i = 1, 2, …, k, k ≥ 1, with color ai, and
tokens with color he that move into pe by firing t. If in
marking M, ∃ i, ∋ M(pi)(ai)<I(pi, ta)(ai, c) and t fires,
then firing t is premature where M(pi)(ai) is the
number of tokens of color ai in pi and I(pi, ta)(ai, c)
represents the number of arcs from pi to ta with
respect to token color ai and transition color c.

For example, to perform the final assembly of A,
there should be an A-base in b3, an A-part from b4,
and another A-part from p0. If the former two items
are not ready at b3 and b5, firing t9 to release A-parts
into b5 is of no use for the assembly process but
occupies buffer spaces. Thus, such premature firing
of t9 should be avoided. Assume that there are β types
of products to be assembled, product i needs di parts
to be mounted onto its base. Thus, if FAS is required
to assembly one product for each type, there are
totally α = β + ∑ =

β
1i id parts including β bases.

Algorithm 4.1: Find RRR for assembling one product
of each type concurrently.

Step 1: Initialization: let K(p) = ∞ for all p ∈ P ={p0,

p1, p2, …, pm} in the CROPN, put α tokens with
their colors in p0 and set the marking of the
CROPN M = M0 with all tokens in p0, and let R[]
= 0 be an m-vector with integer values;

Step 2: Find TE ⊆ T such that ∀t ∈ TE is enabled in
the current marking M. If TE = ∅ then stop,
otherwise go to the next step;

Step 3: In TE find the set of transitions TEF, such that
∀t ∈ TEF whose firing is premature, and set TE =
TE - TEF, do the following:
1) Form a firing sequence f in TE, and the order

can be set arbitrarily;
2) Calculate M’ = M[>f, and let M = M’;
3) For i = 1 to m do

If M(pi) > R[i], R[i] = M(pi);
4) Go to Step 2.

When algorithm 4.1 ends, vector R[] returns RRR.

Example 1: Find RRR in the CROPN shown in Fig.
3.6 via Algorithm 4.1. We obtain RRR for b0, b1, b2,
b3, b4, and b5 are 1, 1, 2, 1, 1, and 2, respectively.

Base on Algorithm 4.1, we know that for the set of
products to be processed in FAS all the operations
can be executed at least once. Thus, according to the
definition of realizability in (Roszkowska, 2004), the
assembly process is realizable.

Property 4.1: For the given set of product types, the
assembly process is realizable with the buffer
capacity obtained by Algorithm 4.1.

Assume that there are m places (buffers) and n
transitions in CROPN of FAS. Then Algorithm 4.1’s
computational complexity is as follows.

Property 4.2: The computational complexity to find
the realizable buffer capacity requirements by
Algorithm 4.1 is O(αn(n + m)).

The solution found by Algorithm 4.1 is shown to be
feasible for the execution of a single product for each
type of product. However, we still do not know if it is
feasible when there are multiple products for each
type. By Algorithm 4.1, we can find Ri[] by releasing
one product of a type i into the CROPN for product
type i. Based on Ri[], i∈{1, 2, …, β}, RRR for
deadlock avoidance with multiple products in FAS
can be calculated as follows.

Definition 4.2: Place p is said to be an assembly place
if ∃t∈p such that t is an assembly transition. Further,
if t is for the assembly of product type i, it is said that
i is a product type assembled in p.

For an assembly place p, let AS(p) denote the set of
product types that are assembled in p, NAS(p) denote
the set of product types that use p in the assembly
process, but are not assembled in p. Clearly, we have
AS(p) ∩ NAS(p) = ∅. If AS(p) = ∅, p is said to be a
non-assembly place. Let Z[k] = ∑i i kR][, i∈
AS(pk) and W[k] = maxj(Rj[k]), j∈ NAS(pk), then
R[k] = Z[k] + W[k] is the minimal resource
requirement for deadlock control with multiple
products in the system, where k is the kth place.

Example 2: Find RRR for deadlock control in the
CROPN shown in Fig. 3.5. From the CROPNs shown
in Fig. 3.4 (a) and (b), we obtain RA[] = (1, 1, 1, 1, 1,

2) and RB[] = (1, 1, 1, 1, 1, 1). Based on Definition
4.2 we obtain R[] = (2, 1, 2, 2, 2, 3) that is smaller
than (2, 1, 2, 2, 3, 3) obtained in (Roszkowska, 2004).

5. DEADLOCK AVOIDANCE POLICY

We assume that the buffer capacity in the system is
greater than or equal to R[]. Deadlock due to base
component and part flows takes place in circuits. In
Fig. 3.5, if circuits C1 = {b0, t3, b1, t5, b2, t17, b0} and
C2 = {b2, t8, b3, t15, b2} are full, deadlock occurs.
Consider a subnet shown in Fig. 5.1 where K(pi)=1,
i=1-4. Assume that t3 is an assembly transition for
A-products. It requires an A-base and an A-part in p3
and p4, respectively. t4 is an assembly transition for
B-products, it requires a B-base and a B-part in p3
and p4, respectively. If at some time, p3 has A-base
and p4 B-parts, although there may be B-base in p1
and A-parts in p2, assembly cannot be done and a
deadlock occurs. Hence, to avoid deadlock in FAS
we should avoid deadlock resulting from base
component flow, part flow and assembly.

p2p1

p3 p4

t1 t2

t3 t4

Fig. 5.1. PN subnet for assembly operations

The buffers belonging to a workstation can be seen as
a special set of buffers denoted by Bi for workstation
i. It may contain only one buffer. Bi is called a buffer
group. We also notice that there is some t ∈ p0 and
t is an input place of an assembly transition such
that firing t releases a part into the system. Such a set
of transitions is denoted by Ttray. For example, in the
CROPN shown in Fig. 3.8, t2 and t9 are such
transitions.

WZ-Policy: A transition t∈T in CROPN for FAS in
marking M is enabled and its firing changes M to M’.
Then t can fire only if all the following conditions are
met:

1) Assume that there are k groups of buffers B1-k for

the base. Then in M’ there are at least k-1 free
buffer spaces such that at most one group Bi is full;

2) Assume that there are k buffers b1-k for the parts to
be mounted onto the base. Then in M’ there are at
least k-1 free buffer spaces such that at most one
buffer is full;

3) Assume t∉ Ttray, and its firing moves Vh tokens of
type-h product into pi. Let M(pi)(k) denote the
number of tokens representing type k product in pi
in M. Further assume t1 ∈Ttray, and its firing moves
Uh tokens of type-h product into pi. Then

a) K(pi) – W[i] - ∑ ≠∈ hkiASk),(
max(M(pi)(k),

Rk[i]) – M(pi)(h) – Uh ≥ Vh, if h∈AS(i);
b) K(pi) – Z[i] - M(pi)(h) ≥ Vh, if h∈NAS(i);

4) Assume t ∈ Ttray, its firing moves Uh tokens of

type-h product with color C1 into pi, and these
tokens together with Vh tokens of type-h product in
pj and Yh tokens with color C2 in pi enable
assembly transition ta. Then M(pj)(h) ≥ Vh,
M(pi)(C2) ≥ Yh, and M(pi)(C1) = 0.

Conditions 1-2 ensure that the base and part flows
will not be deadlocked, respectively. Condition 3
ensures that the state shown in Fig. 5.1 can never
occur. Condition 4 avoids any premature firing so
that the buffer spaces are effectively used. Conditions
3 and 4 make no restriction on a non-assembly place.

Theorem 5.1: The CROPN for an FAS is
deadlock-free if WZ-policy is applied.

Proof: See (Wu and Zhou, 2004b).

Although WZ-policy is a group of sufficient
conditions, it is not too conservative. For we require
only n-1 free space for the base component and part
transportation, respectively, with n groups of buffers.
In general, in FAS each buffer has multiple spaces.
Hence the restriction imposed is not too much. We
impose less restriction on the number of parts in FAS,
rather restrict the ratio of parts among the types.

Theorem 5.2: WZ-policy is less conservative than
R-policy (Roszkowska, 2004).

Proof: See (Wu and Zhou, 2004b).

Theorem 5.3: The complexity for implementing
WZ-policy is O(|P|β), where P is the place set in
CROPN and β is the number of product types.

6. ILLUSTRATIVE EXAMPLE

Example 3: Consider the FAS shown in Fig. 2.1. The
capacity of b0-5 is 2, 4, 4, 3, 6, and 5, respectively.
The CROPN is shown in Fig. 3.5. By using R-policy
(Roszkowska, 2004), a marking is reached such that 1,
1, 3, 1 A-bases are in b0, b1, b2, and b3, respectively. 3,
3 A-parts are in b4, b5, respectively. 1, 1, 1 B-bases
are in b0, b1, and b3, respectively. 1, 1 B-parts are in
b4, b5, respectively. In this marking t12 is forbidden by
R-policy. This implies that no more jobs can be
released into the system.

Consider the system under WZ-policy. From Section
4, RA[] = (1, 1, 1, 1, 1, 2) and RB[] = (1, 1, 1, 1, 1, 2).
Places b0 and b2-5 are assembly places. In this
marking, it is easy to verify that Condition 3) is
satisfied for both products A and B. There are three
groups of places for the base flow B1 = {b0, b1}, B2 =
{b2}, and B3 = {b3}, Condition 1 is satisfied at this
marking. The free spaces in b4 and b5 are 1 and 1, or
Condition 2 is also satisfied. This implies that this
marking is a legal marking for WZ-policy and can be
reached. However, there are more free spaces in the
buffers than what is required by WZ-policy, so more
parts can be released into the system if other
conditions are satisfied. In fact, in this marking, t12 is

enabled and firing it does not violate WZ-policy, so it
can fire.

In fact, we have ∑ =

3
0i K(bi) = 13. By Condition 1,

only two free spaces are needed. This implies that at
most 11 products can be released into the system for
assembly. Assume that initially M0(p0) > 0 and for
any i, M0(bi) = 0, the evolution from M0 is presented
in Table 6.1 where the number in the brackets after a
pace represents the capacity of the place. In the table,
1 is used for a token of A-base with color fAB1 and

2 for a token of A-base with color fAB2; 3 for A-part
with color fAP1, 4 for A-part with color fAP2, and 5
for A-part with color fAP3; X for B-base with color
fBB1, Y for B-base with color fBB2, Z for B-base with
color fBB3, and [for B-base with color fBB4; for
B-part with color fBP1, for B-part with color fBP2,
and for B-part with color fBP3. It is shown that
totally, 11 products are released into the system for
assembly. R-policy allows only 9 products to be
released into it. This example shows Theorem 5.2’s
correctness.

Table 6.1. The token evolution from M0

Marking Type b0(2) b1(4) b2(4) b3(3) b4(6) b5(5)
A 1 3

M1 B X
A 1 2 34

M2 B YX
A 1 2 2 34 4

M3 B Y YX
A 1 2 22 34 44

M4 B ZY YX
A 1 22 2 2 44 4445

M5 B Z ZY YX
A 1 22 22 2 443 4445

M6 B Z [Z YY

7. CONCLUSIONS

In FAS, base components are transported with pallets,
and parts to be mounted onto them are transported
with no pallets but via trays. When an assembly
operation is performed by using some parts in a tray,
the tray still occupies a buffer space. In this way, an
assembly/disassembly material flow is formed. In
such systems, deadlock can occur in the base
component flow, part flow and assembly. Thus, it is a
great challenge to avoid deadlock in FAS. This paper
proposes to use resource-oriented Petri nets to
capture the discrete event dynamics of FAS concisely
and presents a deadlock control policy. The policy is
computationally efficient and better than the existing
one. It may be used to FAS in (Hsieh, 2004).

REFERENCES

Z. A. Banaszak and B. H. Krogh (1990). Deadlock

avoidance in flexible manufacturing systems with
concurrently competing process flows, IEEE Trans.
on Robotics and Aut., 6(6), pp. 724-734.

J. Ezpeleta, J. M. Colom, and J. Martinez (1995). A
Petri net based deadlock prevention policy for
flexible manufacturing systems, IEEE Trans. on
Robotics and Aut., vol. 11, no. 2, 171-184, 1995.

M. P. Fanti, B. Maione, and B. Turchiano (1997),
Event control for deadlock avoidance in assembly
systems, in Proc. IEEE Conf. Systems, Man, &
Cybernetics, 3756-3761.

M. P. Fanti and M. Zhou (2004). Deadlock control
methods in automated manufacturing systems,
IEEE Trans. on Systems, Man, & Cybernetics,
Part A, vol. 34, no. 1, 5-22.

F.-S. Hsieh (2004). Fault-tolerant deadlock

avoidance algorithm for assembly processes, IEEE
Trans. on Systems, Man, & Cybernetics, Part A,
vol. 34, no. 1, 65-79.

M. Lawley (1999). Deadlock avoidance for
production systems with flexible routing, IEEE
Trans. on Robotics and Aut., 15(3), 497-509.

E. Roszkowska (2004) Supervisory control for
deadlock avoidance in compound processes, IEEE
Trans. on Systems, Man, & Cybernetics, Part A,
vol. 34, no. 1, 52-64.

E. Roszkowska and R. Wojcik (1993). Problems of
process flow feasibility in FAS, in CIM in Process
and Manufacturing Industries, Oxford, UK:
Pergamon, 115-120.

N. Q. Wu (1997). Avoiding deadlocks in automated
manufacturing systems with shared material
handling system, in Proc. of 1997 IEEE Int. Conf.
on Robotics and Aut., pp. 2427-2433.

Wu, N. Q. and M. C. Zhou (2001). Avoiding
deadlock and reducing starvation and blocking in
automated manufacturing systems, IEEE Trans. on
Robotics and Aut., vol. 17, no.5, 657-668.

N. Q. Wu and M. C. Zhou (2004a). Modeling and
deadlock control of automated guided vehicle
systems, IEEE Trans. on Mechatronics, 9(1),
50-57.

N. Q. Wu and M. C. Zhou (2004b). Resource
Oriented Petri Nets for Deadlock Avoidance in
Flexible Assembly Systems, Technical Report
#2004-45, ECE, New Jersey Inst. of Technology.

M. Zhou and F. DiCesare (1991). Parallel and
sequential mutual exclusions for Petri net
modeling of manufacturing systems with shared
resources, IEEE Trans. on Robotics and Aut., vol.
7, no. 4, 515-527.

M. C. Zhou and K. Venkatesh (1998). Modeling,
Simulation and Control of Flexible Manufacturing
Systems: A Petri Net Approach, World Scientific,
Singapore.

	A PETRI NET-BASED DEADLOCK CONTROL POLICY FOR FLEXIBLE ASSEMBLY SYSTEMS
	1. INTRODUCTION
	
	
	
	
	
	
	Finite Capacity PN: Petri nets are powerful in modeling the behavior of resource allocation. Because the resources are limited in FAS, a finite capacity Petri net is an ideal choice to model them. The concept of PN presented here is based on (Zhou and V

	REFERENCES

