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Abstract: A priori information for optimal robust synthesis includes a nominal sys-
tem and sets of perturbations and disturbances. This paper addresses the problem
of optimal robust synthesis in the `1 setup when the nominal system is given but
upper bounds for norm-bounded perturbations and exogenous disturbance are not
known to controller designer. We consider coprime factor nominal systems and
show that the worst-case norm of the system output is a linear fractional function
of the induced norms of system transfer functions and the norms of perturbations
and disturbance. Iterative alternate optimization of this function over the Youla
parameters and the norms of perturbations and disturbance that are not falsified
by data is used for synthesis of robust controller. Efficiency of the method is
illustrated by simulations. Copyright c©2005 IFAC
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1. INTRODUCTION

The `1 optimal control is associated with magni-
tude bounded exogenous disturbances and the `∞
signal space (Dahleh & Diaz-Bobillo, 1995; Bara-
banov, 1996). This paper addresses the problem
of `1 optimal robust synthesis. Basic results on
stability and performance robustness for systems
with structured time-varying uncertainty were ob-
tained in Khammash and Pearson (1991, 1993).
A standard approach to complicated non-convex
problem of optimal robust synthesis is to solve
a family of auxiliary problems, each is to guar-
antee a prespecified upper bound for the control
criterion. Then the one-parametric search of ap-
proximately minimal upper bound gives a sub-
optimal controller. Khammash, Salapaka, & Van-
voorhis (2001) proposed a solution to the auxiliary
problem for linear time-invariant (LTI) nominal

1 Supported by the Russian Fund of Basic Research.

systems with structured uncertainty and bounded
exogenous disturbance. This solution is based on
searching over a mesh in a set of scaling diagonal
matrices. In order to get an approximate solution
to the auxiliary problem with an ε tolerance, the
number of linear programming problems to be

solved is in the order of
(

1
ε

)n+1
where n is the

number of independent perturbation blocks.

A priori information for suboptimal robust syn-
thesis includes not only the description of the
nominal system but the set of admissible uncer-
tainties as well. This paper addresses the problem
of suboptimal robust synthesis under insufficient a
priori information about uncertainties. We assume
that upper bounds for the norm of exogenous dis-
turbance and the induced norm of perturbations
are very conservative (or unknown) and must be
estimated on the basis of finite measurement data.
This estimation problem is known as error quan-
tification. It implies a solution of model valida-



tion problem to determine whether specific upper
bounds for uncertainties are not falsified by data.
In H∞ setup, the model validation problem was
studied since early 90th (see, e.g., Smith & Doyle
(1992) and Poolla, Khargonekar, Tikku, Krause,
& Nagpal (1994) for the time-domain approach)
and remains incompletely solved (see, e.g., Smith,
Dullerud, & Miller (2000) and Dullerud & Smith
(2002) for recent progress). In contrast to the H∞

setup, the model validation problem in the `1

setup is much easier . Its solution for LTI nominal
models with structured uncertainties is reduced to
the test of certain inequalities produced by data
(Sokolov, 2003).

The problem of optimal robust synthesis under
unknown uncertainty level involves the joint min-
imization of the control criterion over the Youla
parameter of controller and over the upper bounds
for uncertainties that are not falsified by data. It
means, in particular, that the error quantification
problem is considered in the optimal setup where
the control criterion is treated as the identification
criterion. Then the searching method proposed
in Khammash, Salapaka, & Vanvoorhis (2001)
for minimization over the Youla parameter needs
not only the additional one-parametric search of
minimal upper bound for the control criterion but
a multi-parametric search of optimal non-falsified
upper bounds for uncertainties as well. This may
make the problem of optimal robust synthesis
computationally intractable.

To make this problem computationally tractable,
we consider coprime factor nominal models and
show that they have following significant merits.
First, the control criterion for these models turns
out to be a linear fractional function both with
respect to the induced norms of system transfer
matrices and with respect to the upper bounds
of the norms of perturbations and exogenous dis-
turbance. Second, the inequalities in the model
validation test become linear in the upper bounds.
Then the minimization over the Youla parameter
comes to a linear programming problem and no
additional search is required. Linear fractional
structure of control criteria and reducibility of
the optimal robust synthesis to linear program-
ming were exploited in Sokolov (2002,2001) in the
regulation problem and in Yamada, & Funahashi
(2002) in a specific tracking problem. Further-
more, the optimization of the control criterion
over non-falsified upper bounds comes also to a
linear programming problem. Then iterative alter-
nate minimizations over the Youla parameter and
the upper bounds is a natural heuristic method
for solution of the problem under consideration.
Although the convergence to the global minimum
is not proved, the iterative scheme performs well
in simulations. At least, this method provides
nonconservative non-falsified estimates of the up-

per bounds and the optimal robust controller as-
sociated with these estimates. Efficiency of the
method is illustrated by simulations.

Notation

|x|∞ := maxi |xi| for the vector x = (x1, . . . , xn)∗ ∈
R

n. `n is the space of real vector sequences
x = (x(0), x(1), . . .) with elements x(k) ∈ R

n,
xt

0 := (x(0), x(1), . . . , x(t)). `n
∞ is the space of real

bounded vector sequences with the norm ‖x‖∞ :=
supk |x(k)|∞ . `1 is the space of real summable
sequences with the norm ‖x‖1 :=

∑

k |x(k)|. A
map H : `p → `q is said to be `∞-stable (stable,
for short), if it is causal, maps `p

∞ into `q
∞, and

‖H‖ := sup
x6=0

‖H(x)‖∞
‖x‖∞

< +∞ (1)

(‖H‖ is the gain of H for nonlinear H). The terms
of system and map are understood as equivalent.
Any linear time-invariant causal system H : `p →
`q can be defined by the convolution

Hx(t) :=

t
∑

k=0

H(k)x(t − k) , H(k) := (Hij(k)),

where the same notation H is used for the q × p
matrix of impulse responses Hij ∈ `. The system
H is `∞-stable iff Hij ∈ `1 for all i, j. The induced
`∞-norm of the stable LTI system H is defined by
(1) and equals

‖H‖ = max
1≤i≤q

p
∑

j=1

‖Hij‖1 .

The matrix valued function H(λ) :=
∑∞

k=0 H(k)λk

of complex variable λ is called the transfer func-
tion of the system H and ‖H(λ)‖ := ‖H‖.

2. PROBLEM STATEMENT

Consider a discrete-time system shown on Fig. 1.

Fig. 1. Control system with uncertainties

G, K, z, y, u and w are the generalized LTI nom-
inal system, the LTI controller, the regulated
output, the measured output, the control input,
and the exogenous disturbance, respectively. Inner
model uncertainty is represented by the perturba-
tion block ∆ which is restricted to lie in the set ∆
of admissible structured perturbations:

∆ ∈ ∆ := {∆ = diag (∆1, · · · , ∆n) |



∆i : `qi

∞ → `pi

∞ is strictly causal and ‖∆i‖ ≤ 1} .

Here n is the number of independent perturbation
blocks ∆i. The LTI blocks Ww and Wp represent
the weights of exogenous disturbance and pertur-
bations.

Let the control criterion be

J(K, G, Ww, Wp) := sup
∆∈∆

sup
‖w‖∞≤1

‖z‖∞

The system is called robustly stable, if J is finite.
The problem of optimal robust synthesis is stated
as follows

min
K

J(K, G, Ww , Wp) (2)

In the particular case ∆ = 0, this problem is the
problem of the `1 optimal control (Dahleh & Diaz-
Bobillo, 1995; Barabanov, 1996).

A standard approach to approximate solution of
this problem is to solve the auxiliary problems

J(K, G, Ww, Wp) ≤ γ (3)

and to search minimal reachable γ.

In problem (2), the nominal system G and the
weights Ww and Wp are assumed to be known to
controller designer. We shall consider a problem
where the weights Ww and Wp are unknown
and must be estimated from the measured data
(zT

0 , yT
0 , uT

0 ). Denote by WNF the set of pairs
(Ww, Wp) that are not falsified by the data (see
subsection 3.2 for details on non-falsification) and
consider the following problem of optimal robust

synthesis under unknown uncertainty level

min
(Ww ,Wp)∈WNF

min
K

J(K, G, Ww , Wp) . (4)

Problem (4) implies the solution of the model
validation problem (that is to describe the set of
non-falsified weights WNF ) and the error quan-
tification in the optimal setup where the control
criterion is treated as the estimation one.

Problem (4) concerns the area of control-oriented
identification or identification for robust control.
Although the nominal system G is given and only
the weights (Ww, Wp) are to be estimated, the
problem seems to be computationally intractable
(much more difficult problem of optimal estima-
tion of the nominal system is beyond the scope
of the present paper). Most advanced problems
of error quantification are usually formulated as
follows. Let Ww = δwI and Wp = δpI , where
δw ≥ 0 and δp ≥ 0 are the unknown upper bounds
for the norm of exogenous disturbance and the
induced norm of perturbations, respectively. Then
the problem of error quantification is typically
stated as

min{ δw | (Ww, Wp) ∈ WNF , δp ≤ δmax
p }

where δmax
p is a prescribed upper bound providing

the robust stability (Poolla, Khargonekar, Tikku,
Krause, & Nagpal, 1994; Smith & Doyle, 1992).

In order to make problem (4) computationally
tractable, we restrict our consideration to LTI
nominal systems under coprime factor perturba-
tions. The weight Wp is assumed to be a diagonal
real matrix and Ww = δwI . We show that the
control criterion J for such systems becomes a
linear fractional function both with respect to the
induced norms of the system transfer matrices and
with respect to the weights while the set of non-
falsified weights WNF is described by linear in-
equalities produced by data. Then the minimiza-
tion of the control criterion J both over the Youla
parameter of controller and over the unknown
weights comes to linear programming problems.
This allows to propose the iterative alternate min-
imizations over the weights and the Youla param-
eter as a heuristic method for solution of problem
(4). Simulations presented in section 4 shows the
efficiency of this iterative scheme.

3. NOMINAL SYSTEM UNDER COPRIME
FACTOR PERTURBATIONS

3.1 Approximate optimal robust synthesis under

known uncertainty level

Consider the closed loop control system

(M̃ − ∆1Wy)y = (Ñ + ∆2Wu)u + δww ,
u = Ky

(5)

where M̃(q−1) and Ñ(q−1) are left coprime poly-
nomial matrices in the backward shift operator
q−1, det M̃(0) 6= 0, and K is a rational transfer
matrix of the controller. The signal w represents
the normalized exogenous disturbance with the
weight δw and ∆1 and ∆2 are normalized per-
turbations with the weights

Wy = diag (δ1
y , . . . , δny

y ), Wu = diag (δ1
u, . . . , δnu

u ) .

All the weights are nonnegative without loss
of generality. We consider perturbations of two
kinds:
a) structured uncertainty

∆ =

[

∆1 0
0 ∆2

]

, ‖∆1‖ ≤ 1 , ‖∆2‖ ≤ 1 ,

b) unstructured uncertainty

∆ = [∆1, ∆2] , ‖ [∆1, ∆2] ‖ ≤ 1 .

For systems under coprime factor perturbations,
the case b) is usually considered while the case
a) of independent perturbations in the output
and control is more realistic and may provide less
conservative error quantification.



Let NM−1 be the right coprime factorization
of the nominal system M̃−1Ñ and polynomial
matrices X and Y be the solutions to the Bezout
equation

M̃X − ÑY = I .

Then all stable transfer functions Gyd and Gud

from the total disturbance d := ∆1Wyy +
∆2Wuu + δww to the output y and control u
associated with stabilizing rational controllers K
are of the form

Gyd = X − NQ , Gud = Y − MQ

where Q is the Youla parameter (see, e.g., Bara-
banov, 1996). In order to represent the system (5)
in the form of Fig. 1 define

z = y , Ww := δwI , Wp :=

[

Wy 0
0 Wu

]

,

Theorem 1. For the system (5) with zero initial
conditions

J(K, G, Ww , Wp) =
δw‖Gyd‖

1 − ‖WyGyd‖ − ‖WuGud‖

in the case a) of structured uncertainty and

J(K, G, Ww, Wp) =
δw‖Gyd‖

1 − max{ ‖WyGyd‖ , ‖WuGud‖ }

in the case b) of unstructured uncertainty. The
system is robustly stable if and only if the de-
nominator in the respective formula is positive.

Proof. The proof is omitted.

Note that the relatively simple linear fractional
formulae for the control criterion J does not hold
if the weights Wy or Wu are not diagonal or the
perturbations are weighted on theirs outputs.

Consider the problem of optimal robust synthesis
(2) in the case a) of structured uncertainty. Due to
Theorem 1 the auxiliary problem takes the form

δw‖Gyd‖

1 − ‖WyGyd‖ − ‖WuGud‖
≤ γ

and can be rewritten as

δw

γ
‖Gyd‖ + ‖WyGyd‖ + ‖WuGud‖ ≤ 1 . (6)

Problem (6) is the standard mixed sensitivity
problem of the `1 optimization. Its approximate
solution by the scaled-Q method proposed in
(Khammash, 2000) comes to a finite linear pro-
gramming with respect to the coefficients Q(k)
of the polynomial Youla parameter Q. To get an
approximate solution with an ε tolerance, it is
necessary to solve one linear programming prob-
lem for the polynomial matrix Q of sufficiently
high degree. At the same time, suboptimal robust
synthesis by the method proposed in Khammash,
Salapaka, & Vanvoorhis (2001) needs the solution

of 1/ε3 linear programming problems of the same
complexity. In the case b) of unstructured uncer-
tainty, similar reduction of the auxiliary problem
to a linear programming is possible (although the
reformulated problem is not the standard mixed
sensitivity problem). The method proposed in
Khammash, Salapaka, & Vanvoorhis (2001) needs
in this case the solution of 1/ε2 linear program-
ming problems.

3.2 Optimal error quantification for fixed

controller

Consider the following problem of optimal error

quantification

min
(Ww ,Wp)∈WNF

J(K, G, Ww, Wp) . (7)

A solution to problem (7) provides optimal esti-
mates of the weights when the robust controller
K for the given nominal system is fixed. This
problem is auxiliary for our main problem (4) but
seems to be useful in itself. Indeed, the weights
of uncertainties may be different in different op-
erational conditions for the same control system.
Then the solution to problem (7) provides the best
non-falsified estimates of weights in terms of the
control criterion J . It must be emphasized, that
the observed real magnitude of the system output
is typically less than its worst-case value J and
may not serve as a strict and logical criterion for
evaluation of the given nominal model and the
used controller (this is illustrated by Simulation 1
in section 4).

Now we formalize the notion of non-falsified
weights and show that problem (7) for system (5)
is a linear programming problem with respect to
all weights of uncertainties.

Definition. Given a nominal system P = M̃−1Ñ
and the data (yT

0 , uT
0 ), the weights (Ww , Wp) are

said to be not falsified by the data, if there exist
a disturbance w, ‖w‖∞ ≤ 1, and a perturbation
∆, ∆ ∈ ∆, such that the upper equation in (5) is
satisfied on the time interval [0, T ].

Lemma 1. The weights (Ww , Wp) are not falsified
by the data (yT

0 , uT
0 ) if and only if for all τ =

0, 1, · · · , T

|(M̃y)(τ) − (Ñu)(τ)|∞ ≤ δw+
max
s<τ

|Wyy(s)|∞ + max
s<τ

|Wuu(s)|∞

in the case a) of structured uncertainty and

|(M̃y)(τ) − (Ñu)(τ)|∞ ≤ δw+
max
s<τ

max{|Wyy(s)|∞ , |Wuu(s)|∞}

in the case b) of unstructured uncertainty.



Proof. The proof of Lemma 1 follows obviously
from the upper equation in (5) and Lemma 4 in
Khammash & Pearson (1991).

Lemma 2. The problem of optimal estimation of
weights (7) for the system (5) is a linear pro-
gramming problem with respect to the weights
δ1
y, . . . , δ

ny

y , δ1
u, . . . , δnu

u , δw.

Proof. In view of Theorem 1 the cost function in
the problem (7) is linear fractional in the weights.
The set of unfalsified weights WNF is described by
linear inequalities due to Lemma 1. Finally, any
linear fractional problem under linear constraints
is reducible to a linear programming problem (see,
e.g., Schaible, 1974).

3.3 Iterative robust synthesis under unknown

uncertainty level

Since problems (2) and (7) for system(5) are re-
duced to linear programming, a natural heuristic
method for approximate solution of problem (4)
is to solve both problems iteratively.

Step 1. Set i := 1. Define K0 := K and arbitrary
(W 0

w, W 0
p ) ∈ WNF .

Step 2. On the ith iteration

Ki := argmin
K

J(K, G, W i−1
w , W i−1

p ) ,

(W i
w , W i

p) := argmin
(Ww ,Wp)∈WNF

J(Ki, G, Ww , Wp) .

Step 3. If

J(Ki, G, W i
w , W i

p) < (1−2ε)J(Ki, G, W i−1
w , W i−1

p ) ,

then i := i + 1 and go to step 2; otherwise stop
the algorithm.

Here ε > 0 is the tolerance of approximate solu-
tion of optimal problems on step 2.

The iterative algorithm provides non-falsified es-
timates of the unknown weights and a decrease of
the control criterion on each iteration. Although
the convergence to global or local minimum in
problem (4) is not guaranteed in theory, simu-
lations in section 4 show the efficiency of the
algorithm.

4. SIMULATIONS FOR SISO SYSTEM

Consider the discrete-time SISO system
(

1 +
13

6
q−1 +

17

8
q−2 +

3

4
q−3

)

y(t) =

(

0.3q−1 + 0.8q−2 − 0.3q−3
)

u(t) + d(t) .

The nominal system a(λ)/b(λ) is unstable and
non-minimum phase with the poles −3/2 and

−2/3± 2/3i and the zeros 3 and −1/3. The total
disturbance d is simulated as follows

d(t) = δwξ1(t) + 0.5 δyy(t − 3) + 0.5 δyξ2(t)y(t − 4)
+0.5 δuu(t − 3) + 0.5 δuξ3(t)u(t − 4)

(8)

where ξ1, ξ2, and ξ3 are independent uniformly
distributed on [-1,1] and unknown weights are

[ δw , δy , δu ] = [ 0.1 , 0.05 , 0.15 ] .

Thus, the structured uncertainty in the system
is represented by unmodeled deterministic and
stochastic dynamics in d.

The solution of problem (2) with 0.001 relative
tolerance gives the optimal robust controller char-
acterized by the pair

(‖Gopt
yd ‖, ‖Gopt

yd ‖) = (7.339, 1.9322) .

Note that the optimal robust controller depends
only on the weight δu (see Sokolov (2000) for
details). Therefore, the iterative algorithm was
tested for 10 different initial estimates of δu.

Simulation 1. The upper graph in Fig. 2 presents
the outputs y100

0 produced by the `1 optimal
controller associated with zero perturbations. For
all, except zero, initial estimates of δu, the it-
erative algorithm of subsection 3.3 gives a con-
troller associated with the pair (‖Gyd‖, ‖Gyd‖) =
(6.4384, 2.9213). For comparison, the lower graph
presents the outputs produced by the optimal
robust controller, which is unknown to controller
designer.

0 100

−1

0

1

time

 y

0 100

−1

0

1

time

 y
op

t

Fig. 2. Outputs: y – for the `1 optimal controller,
yopt – for the actual optimal robust controller

Simulation 2. The upper graph in Fig. 3 presents
the outputs y100

0 produced by the controller ob-
tained in Simulation 1. For all, except zero, initial
estimates of δu, the iterative algorithm of subsec-
tion 3.3 applied to the joint data of Simulations 1
and 2 gives the same controller as in Simulation 1.
For comparison, the lower graph presents the out-
puts produced by the optimal robust controller.



0 100
−0.5

0

0.5

t

y

0 100
−0.5

0

0.5

time

y op
t

time

Fig. 3. Outputs: y – for the controller provided
by Simulation 1, yopt – for the actual optimal
robust controller

Simulation 3. Note that the `1-optimal controller
is characterized by the pair (‖Gyd‖, ‖Gud‖) =
(4.1714, 17.649) and does not ensure robust sta-
bility of the closed loop system. Although uncer-
tainty (8) is not worst-case, potential instability
of the system closed by the `1-optimal controller
is illustrated on Fig. 4. In this case the iterative
algorithm of robust synthesis gives exactly the
optimal robust controller.

0 200
−100

−50

0

50

100

time

y

Fig. 4. The output y for the `1 optimal controller

5. CONCLUSION

The problem of suboptimal robust synthesis under
unknown uncertainty level was discussed for co-
prime factor nominal systems. Proposed iterative
algorithm allows to avoid the search over a grid in
the space of upper bounds for perturbations and
exogenous disturbance.
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