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Abstract: In this paper, the robust fault detection filter (RFDF) design problem for
linear discrete-time systems with both unknown inputs and polytopic type uncer-
tainties is studied. The main contributions include the H,-filtering formulation of
RFDF design problem, the extension of an H-filtering approach to the polytopic
type RFDF problem, the derivation of sufficient conditions in terms of linear
matrix inequalities (LMIs), and the parameterization of parameter-independent
RFEDF solutions. A numerical example is given to illustrate the effectiveness of the

proposed method. Copyright© 2005 IFAC
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1. INTRODUCTION
In this paper, we consider the robust fault detec-

tion filter (RFDF') problem for a kind of uncertain
linear discrete time systems described by

z(k + 1) = Az(k) + Bu(k)

+Bad(k) + By f(k) (1)
y(k) = Cx(k) + Du(k)
+Dad(k) + Dy f (k) (2)

for k =0,1,2,..., where (k) € R™ is the state,
u(k) € RP the control input, y(k) € R? the mea-
surement output, d(k) € R™ the unknown input,
f(k) € R the fault to be detected. It is assumed
that d(k) and f(k) are lg-norm bounded. C, D,
By, By, D4, Dy are known matrices with ap-
propriate dimensions. A and B are matrices with

uncertainties and obey the real convex polytopic
model [A B] € Q which is denoted by

1>

Q

{[w]—icm 5],

N =1
dG=1, (> 0}
=1

for i = 1,2,---, N, the A; and B; are constant
matrices with appropriate dimensions, ¢; denote
time-invariant uncertainties.

Robustness of an FDI system involves two as-
pects: robustness to modelling errors, distur-
bances and sensitivity to faults (Chen and Pat-
ton, 1999; Frank et al., 2000; Gertler, 1998; Kin-
naert, 2003; Mangoubi and Edelmayer, 2000). It
is often the nature of industrial systems that the
effects of the possible faults and disturbances are
coupled and that modelling error are unavoidable.
The performance of an FDI system should there-
fore be measured by a suitable trade-off between
the robustness and sensitivity, see for instance



the parity space method , eigenstructure assign-
ment, the Ho,/Hoo or Hoo/H_ based optimiza-
tion, the linear matrix inequality (LMTI) approach,
and the H-filtering formulation of robust FDI
(Chen and Patton, 2000; Ding et al., 2000; Ding
et al., 2001; Gertler and DiPierro, 1997; Patton
and Chen, 2000; Zhong et al., 2001).

In this paper, a parameter-independent RFDF is
developed for systems described by (1)—(2). The
design problem of RFDF is formulated in the sense
of H.-filtering formulation and, based on this,
a sufficient condition for the solvability of this
problem is derived in terms of LMIs by applying
H-filtering techniques in (Geromel et al., 2000).
A simulation example is given to illustrate the
effectiveness of the proposed method.

Notations. Throughout this paper, the super-
script T' denotes matrix transposition, R™ denotes
the n-dimensional Euclidean space. R™"*" is the
set of all n x m real matrices. For a real symmetric
matrix M, we use M > 0 (< 0) to denote its pos-
itive (negative) definiteness. All matrices, if their
dimensions are not explicitly stated, are assumed
to be compatible. I denotes identity matrix with
approximate dimensions. [y denotes the space of
square summable sequences. For w € la, ||w||y
denotes the [5-norm.

2. PROBLEM FORMULATION

In this paper, the following RFDF is considered:

n(k +1) = Ayn(k) + Myu(k) + Byy(k)  (3)
r(k) = Cyn(k) + Mau(k) + Dyy(k)  (4)

where (k) € R™ is a vector, 7(k) € R! denotes
the generated residual. A,, € R™", B, € R**9,
C, € R»" D, € R™*9, M; € R™P M, € RI*P
are parameter matrices to be determined. The
main attention is paid on finding suitable matrices
A,, By, Cy, Dy, My and My such that system (3)-
(4) is asymptotically stable and, under zero initial
condition, make v > 0 small in the feasibility of

|-
sup 2 <y (5)
A,BeEQ,||w|,7#0 HwHQ

where w(k) = [ul(k) d"(k) fT(k)]", f(z) =
We(2z)f(2), Wr(z) is a given weighting matrix
which is used to limit the frequency range of
interested fault.

Suppose the state space realization of f(z) =
Wy(z)f(2) is

s (k + 1) =Awy zj(k) + Bwy f(k)  (6)

f(k)=Cwy xs(k) + Dwy f(k) (7

27(0)=0 (8)

Denote ro(k) = r(k)— f (k). From (1)~(4) and (6)-
(8), the overall dynamics of RFDF are obtained as
following:

z(k + 1) = Az(k) + Bu(k) + Bad(k) + Bz f(k) (9
n(k+1)=B,Cx(k) + A;n(k) + (M + B,D)u(k
+B,Dad(k) + ByDyf (k) (10
wp(k+1)=Awy (k) + Bwy f(F) (11
re(k) = DpCa(k) — Cwy (k) + Cyn(k)
+(Msy + D, D)u(k) + D, Dgd(k)
+(DyDy — Dwy) f (k) (12)

)
)
)
)

Thus, performance index (5) is equivalent to

sup |[|Grow(2)|[oo < (13)
A,BEQ

where

Grow(2) = [ D,C Cy —Cuy ]

-1

A 0 0
x|zI-|B,C A, 0
0 0 Awy
B By By
x | My + B,D B,D4 By,Dj
0 0 Bwy

+ [(JWQ +DnD) DnDd (Dan 7DWf)]

For the sake of simplicity, we further rewrite (9)—
(12) into the following augmented system:

§(k+1) = AS(k) + Buow(k) (14)
re(k) = C&(k) + Dyw(k) (15)
where
&= [acT nt x?]T, w = [uT dr fT]jzlﬁ)
R A 0 0
A=|B,C A, 0 (17)
| 0 0 Awy
R [ B By By
B,= | M + B,D B,Dg B, Dy (18)
i 0 0 Bwy
C=[D,C C, —Cwy] (19)

Dy =M+ D,D D,Dy D,Dy — Dy ] (20)

Now the RFDF problem can be re-formulated
as to find A,, B,, C,, D,, M; and My such
that, for all [A B] € €, system (14)—(15) is
asymptotically stable and (13) is satisfied.

Remark 1. The background of our study is the
recent development in the field of continuous-time
system H.-filtering formulation of fault detection



(Chen and Patton, 2000; Niemann and Stous-
trup, 2001; Zhong et al., 2003). The introducing
of weighting matrix Wy (z) is used to limit the
frequency interval, in which the fault should be
identified. While the fault f is not necessary to be
exactly known.

3. MAIN RESULTS

The following lemmas are required to derive the
main results of this paper.

Lemma 1. (de Oliveira et al., 2002)Consider LTI
system

x(k +1) = Az(k) + Bd(k)
y(k) = Cx(k) + Dd(k)
z(0)=zq

where x(k), y(k), d(k) are defined as in (1)—(2).
A,B,C and D are known matrices with appro-
priate dimensions. For given v > 0, the system is
asymptotically stable and satisfies ||Gya(2)||,, <
v, if and only if there exists matrix P > 0 satisfy-
ing LMI

P AP B 0

PAT P 0 PCT
BT 0 +*1 DT
0 ¢cp D I

>0 (21)

Lemma 2. (de Oliveira et al., 2002) LMI (21) is
feasible, if and only if there exist matrices P > 0
and G such that the LMI

P AG B 0
GAT g+g'-pP 0 g'C’
BT 0 v?1 DT
0 CG D I

>0

is satisfied.

We are now in the position to state the main result
of this paper.

Theorem 3. For given v > 0, the RFDF problem
is solvable, if there exist matrices P;, J;, H;, Z, Y,
F, R, L, Q, S and Py > 0 such that LMIs

P, g ZTA; ZTA; ZTBy,
J%-T I;i Ga3i Posi  Pas
A Z d)%?;,i ¢:%3,i P34, 0
AlZ Poai P34 Paai 0
Bgiz ¢g5,i 0 0 ’YQI
0 0 ¢3Tﬁ,i RCy ﬁésTﬁ,i
0 0 0 0 By s
0 0 0 0 0

0 0 0 1
0 0 0
A(/)36,z 0 0
CIR” 0 0
- >0 (22
P56 B?;Vf 0 (22)
I 0 —CwyPs
_PfCWf PfAWf Py d
P J;
LL‘T Hl] >0 (23)
are feasible for ¢ = 1,2,..., N, where

Pogs =Q+ YT A; + FCy, Pogs =Y A + FCy
Pas,i = YT By + FDy,, P33, =2 + zT — P,
Paai=2" +Y + ST —J; ¢36,i:LT+é()TRT
Gua;=Y +Y" —H;, ¢55, =D}, + D} R"

Bui=[B; Ba By], Bwy;=1[00 By;]
(24)
e DDy D
CO_{O}’ DW—L 0 of] (25)
Dyw=1[00 —Dyyy] (26)

In this case, the parameter matrices of RFDF are
given by

Ay= (VD) Qs (27)
[B, My]= (V") 'F (28)
C,=LST'VT, [D, My]=R (29)

where V' € R™*" is arbitrary inverse matrix.

Proof. Given scalar v > 0, from Lemma 1 it
is known that system (14)—(15) is asymptotically
stable and the Hs, norm constraint (13) is sat-
isfied for all [A B ] € Q, if there exists matrix

~ P O
P = [0 Pf:| > ( such that LMI

holds, where A, B,,,C, D,, are defined in (16)-
(20). Moreover, LMI (30) can be re-written into

[ P AP B, 0
PAT p 0  PCT
BT 0 41 DY
0 CP D, I
0 0 Bwy 0
0 0 0 —PiCyy



0 0
0 0
B, 0
>0 (31
0 *Cv[/fpf ( )
PiAly;  Pr

where By is defined in (24), and

. A 0 .
A_{BWCAW], €= [DyC Gy
é o B Bd Bf

©~ | M, + B,D B,D, B,D;

From Lemma 2, LMI (31) is feasible if and only
if there exist matrices P > 0, Py > 0 and G such
that

[P AG By, 0
GAT g+gT-P 0o gGTCT
BY 0 v DT
0 g D, I
0 0 Bw; 0
| 0 0 0 —PiCyyy
0 0
0 0
T
B‘é"f *CI/?/fPf >0 (32)
Py AwgPy
PiAly;  Pro |

holds. Inspired by (Geromel et al., 2000), we define
non-singular matrices U, V and S = VIUZ,
introduce non-singular matrices

o5 e[t

ZY
ro[2Y) "
and non-linear transformation
[Q F] _[vTo
LR| | 01
—An B, M UZ 0
<GtV e
P J T
JT H} =T PT (36)
It is obtained that
. ZTA ZTA
T = A ~
177 AGT = {YTA—&-FCO—FQ YTA—i—FCo]
(37)
A Z'B
T . w
T Bu= {YTBM, + FDW] (38)
CGT =[RCy + L RG] (39)

Dy, =Dy + RDy, (40)

T T —
TG+ -PIT == | o

ZT+y + 87
Y +vY7T

PJ}

Z+ 277
Z+Y"'+ 8

|
where Co, Dy, Dy are defined in (24)—(26). Tt

follows from (32)—(41) that

where

Y = diag[7, 7, I,1,1,1]

P AG B,
GAT G+G"-P 0
- | BE 0 I
10 cG Dy,
0 0 Bw
0 0 0
0 0 0
grer 0 0
DL Bl 0
I 0 —CwyPs
0 PfT Av[/fpf

P J zZ'AZzZTA Z'B,
JT r HT (/)23 ¢24 (/)25
ATZ (/)%3 (/)%3 ¢34 0
o | A Z P2 P30 P O
BYZ ¢3s 0 0 A
0 0 ¢35 RCy ¢

0 0 0 0 Bwy
0

I 0 0 0 0
0 0 0
0 0 0
P36 0 0
CIRT 0 0
P56 By 0
I 0 —CwyPs
0 Pf AWfPf

—PiClyy PrAYy; P |

23 =Q +Y A+ FCo, oy =Y A+ FCy

Gos =Y By + FDyy, ¢g3=2+2" P

boa=2" +Y + 8T —J, ¢y =L +C{RT

=Y +YT —H, 5= wa + DyTwRT
Obviously, if there exist matrices P;, J;, H; , Z,
Y, F, R, L, @, S and Py > 0 such that LMIs
(22)—(23) are feasible, then ® > 0 holds true for
all [A B] € Q and

N N

P=Y"(GPR), T=Y ()

=1 =1



N N
H=> (GH), Y ¢=1
=1 =1

which implies that LMI (32) and further (30) are
feasible also. Moreover, for any inverse matrix
V € R™*" the parameter matrices of RFDF can
be derived as in (27)—(29) from (35). O

Remark 2. Given v > 0, Theorem 3 gives a
sufficient condition for the existence of polytopic
type uncertain linear discrete-time system RFDF
in terms of LMIs. In order to achieve an RFDF
with v made as small as possible in terms of
the feasibility of (13), a repeated application of
Theorem 3 is also required.

4. NUMERICAL EXAMPLE

To illustrate the proposed method, following lin-
ear discrete-time polytopic type unknown systems
are considered

3

3
ok +1)=Y " ¢Aw(k) + Z ¢;Biu(k)

By F(R) + Bad(h)
y(k) = (k) + Dad(k)

where

[0.1 0 4, |01 0
0 —0.01]" “27] 01 -0.2

[05 0.1 0.2
A= 0.015]’ B = [0.5}

[0.1 0.2

Bz = 0.8]’ Bs = [0.3]

[0.1 0.5

Ba= 0.1]’ Br = {0.3]
3

C=[11], Dy=01, > (=1

i=1

A=

The weighting matrix is supposed to be W(z) =

052 with state space realization
2—0.5?

.fo(k? +1)= 0.5.7?f(/€) +0.25f
flk)=as(k) +0.5f

The obtained results are:

Y=101, A, - { 0.4072 0.2094 ]

—0.4540 —0.2369

—0.0154 0.0226
B’?‘{ 0.0166 ] M= {—0.0271}

C, = [—0.0164 —0.0037]
D, =0.0009, Mz =0.0057

For £ = 0,1,...,100, suppose the control input
is unit step signal, unknown input is white noise
with power 0.05, the fault is set up 1 over k €
[10,30] and k € [60,80] (and is zero otherwise).
When ¢; = 0.3, ¢, = 0.3 and (5 = 0.4, Figure 1
to Figure 3 show the time response of the residual
of casel to case 3 respectively.

e case l: u(k) =0, f(k) =0
case 2: u(k) =0, f(k) #0;
case 3: u(k) #0, f(k) #0.

The simulation results show that the residual
is robust to unknown input, sensitive to fault,
while the influence of control input remains large.
Under the assumption of control input being on-
line known, the appeared fault can be detected
efficiently.
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Figure 1. Case 1: u =0, f =0
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Figure 2. Case 2: u =0, f #£0
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time step k
Figure 3. Case 3: u #0, f #0



5. CONCLUSION

Using a general parameter-independent RFDF as
residual generator, the REDF problem for linear
discrete-time systems with polytopic type uncer-
tainties has been formulated as an H..-filtering
problem. A sufficient condition for the solvability
of RFDF has been established in terms of LMIs.
The final results of RFDF have been obtained by
solving a set of LMIs, in which a free parameter
matrix V is included. A simulation example has
been given to demonstrated the effectiveness of
the proposed method.
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