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1. INTRODUCTION

The synthesis of a minimal-order regulator achiev-
ing model matching by output feedback with sta-
bility is devised by using pure geometric argu-
ments (Wonham, 1985; Basile and Marro, 1992).
Although model matching problems has been
widely discussed in the literature, after the pi-
oneering work (Morse, 1973), which provided a
state feedback solution for linear multivariable
systems, just few papers were written approach-
ing the problem by means of geometric/structural
tools. The most of them, however, have addressed
different classes of systems: nonlinear systems
(Kotta, 1994), nonlinear recursive systems (Kotta,
1997), linear systems with delays (Picard et al.,
1996), 2D systems (Loiseau and Brethe, 1997),
periodic systems (Colaneri and Kučera, 1997). In
this paper, we consider model matching by dy-
namic feedforward and, since it can be reduced to
a problem of measurable signal decoupling, we es-
tablish connections between structural and stabi-
lizability conditions for measurable signal decou-
pling and structural and stabilizability properties
of the system and the model. Theorem 2 relates
the structural condition for measurable signal de-

coupling to a relative-degree condition on the
system and the model. Theorems 3 and 4 relate
the stabilizability condition for measurable signal
decoupling to the invariant zero structure of the
system and the eigenstructure of the model. These
theorems exploit the properties of self-bounded
controlled invariant subspaces, for the first time
considered in the frame of model matching. Since
Theorems 2 and 4 state sufficient conditions, they
should also be regarded as guidelines to define
an admissible model for a given system, in a
nonconventional model matching problem where
the designer may intervene on the model itself.
Theorems 5, 6, and 7 give additional insight
into the internal eigenstructure of the minimal
self-bounded and suggest a straightforward proce-
dure to deal with nonminimum-phase systems. Fi-
nally, we show how output feedback model match-
ing can be reduced, from the structural point of
view, to an equivalent feedforward problem (The-
orem 8) and how the synthesis carried out with
the criteria previously considered also guarantees
internal stability of the closed loop (Theorems 9
and 10).



2. MODEL MATCHING BY DYNAMIC
FEEDFORWARD

The original model matching problem is reduced
to an equivalent signal decoupling problem where
the signal to be decoupled is measurable. Hence,
a feedforward solution is considered like that
presented in (Zattoni, 2004). The discrete time-
invariant linear system

xs(t + 1) = As xs(t) + Bs u(t), (1)

ys(t) = Cs xs(t), (2)

is considered, where x∈Xs = R
ns , u∈R

p, and
y ∈R

q respectively denote the state, the control
input, and the controlled output. The system is
assumed to be stable. The set of all admissible
control input functions is defined as the set Uf

of all bounded functions with values in R
p. The

discrete time-invariant linear model

xm(t + 1) = Am xm(t) + Bm h(t), (3)

ym(t) = Cm xm(t), (4)

is also considered, where x∈Xm = R
nm , h∈R

s,
and y ∈R

q respectively denote the state, the ex-
ogenous input, and the measurable output. Also
the model is assumed to be stable. The set of all
admissible exogenous input functions is defined as
the set Hf of all bounded functions with values in
R

s. The matrices Bs, Bm, Cs, Cm are assumed to
be full rank. The symbols Bs, Bm, Cs, Cm are re-
spectively used for im Bs, im Bm, ker Cs, ker Cm.

Problem 1. (Model Matching by Minimal-Order
Dynamic Feedforward) Refer to Fig. 1. Let Σs be
ruled by (1), (2), with xs(0)= 0. Let Σm be ruled
by (3), (4), with xm(0)= 0. Let σ(As)⊂C

� and
σ(Am)⊂C

�. Design a linear dynamic feedforward
compensator Σc ≡ (Ac, Bc, Cc,Dc) of minimal or-
der, such that σ(Ac)⊂C

� and, for all admissible
h(t) (t≥ 0), ys(t)= ym(t) for all t≥ 0.

Theorem 1. Problem 1 is equivalent to a mea-
surable signal decoupling problem stated for the
system

x(t + 1) = Ax(t) + B u(t) + H h(t), (5)

y(t) = C x(t), (6)

where the matrices are A= diag {As, Am},
B =

[
B�

s O
]�, H =

[
O B�

m

]�, C = [Cs −Cm ].

Proof: Set x(t)=
[
xs(t)� xm(t)�

]� and
y(t)= ys(t)− ym(t). The statement directly fol-
lows from the comparison of (1), (2) and (3), (4)
with (5), (6).

In view of Theorem 1, the dynamic feedforward
compensator Σc designed according to the proce-
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Fig. 1. Block diagram for feedforward model
matching.

dure detailed in (Zattoni, 2004) preserves the fea-
tures therein illustrated: minimum number of in-
ternal unassignable dynamics, in particular. Fur-
thermore, Theorem 1 not only provides a straight-
forward technique to design a feedforward com-
pensator with the properties mentioned above,
but also enables connections to be established
between the necessary and sufficient condition
for measurable signal decoupling with stability
(Basile and Marro, 1992) and the geometric prop-
erties of the original system and model. This in-
vestigation appears to be particularly useful from
a practical point of view, since it provides easy-
to-check conditions to verify solvability of the
considered model matching problem and suggests
how to modify a problem which is originally not
solvable, in order to achieve a feasible and satisfac-
tory trade-off. The next properties and theorems
show that, if the system is right-invertible and
the model is reachable, a straightforward relation
established between a pair of easy-to-compute
vectors in the model matching problem, namely
the vector relative degree of the system and the
vector minimum delay of the model, implies that
the structural condition of the measurable signal
decoupling problem, i.e. H⊆V∗ +B, holds. The
following definitions and properties are stated for
a generic discrete time-invariant linear system

x(t + 1) = Ax(t) + B u(t) (7)

y(t) = C x(t), (8)

where x∈X = R
n, u∈R

p, and y ∈R
q respectively

denote the state, the control input, and the con-
trolled output, and where the matrices B and
C are assumed to be full rank. The symbols B
and C stand for imB and ker C, respectively. The
symbol Uf denotes the set of all admissible control
input functions, defined as the set of all bounded
functions with values in R

p. The symbol Iq stands
for the set { i∈Z

+ : 1≤ i≤ q }. For the sake of
brevity, the proofs of the following properties are
omitted and the reader should refer to (Marro and
Zattoni, 2004).

Definition 1. Consider the system (7), (8) with
x(0)= 0. Let (A,B,C) be right-invertible. The
vector relative degree is the vector ρ= [ ρ1 . . . ρq ]�,
where

ρi = min
u(·)∈Uf

{
t̄∈Z

+: yi(t̄) �= 0, yi(t) = 0, ∀ t< t̄,



yj(t) = 0, ∀ t≥ 0, j ∈Iq, j �= i} , i ∈ Iq.

Property 1. Consider the system (7), (8) with
(A,B,C) right-invertible. For any i∈Iq, let Ci

be i-th row of C, Ci = ker Ci, C̄i =∩j ∈Iq, j �= i Cj ,
V̄∗

i = maxV(A,B, C̄i), R̄(1)
i =B∩ V̄∗

i , and, finally,
R̄(η)

i = (A (R̄(η−1)
i ∩ V̄∗

i )+B)∩ V̄∗
i , η = 2, . . . , ki, ki

(≤n) the least integer such that R̄(ki+1)
i = R̄(ki)

i .
Then, for any i∈Iq, ρi is the least integer such
that Ci R̄(ρi)

i �= 0.

Definition 2. Consider the system (7), (8) with
x(0)= 0. Let (A,B) be reachable. The vector min-
imum delay is the vector δ = [ δ1 . . . δq ]�, where

δi = min
u(·)∈Uf

{
t̄∈Z

+ : yi(t̄) �= 0, yi(t) = 0, ∀ t< t̄
}

,

i ∈ Iq.

Property 2. Consider the system (7), (8). Let
(A,B) be reachable. For any i∈Iq, let Ci

denote the i-th row of C. Let R(1) =B,
R(η) =AR(η−1) +B, η = 2, . . . , k, where k≤n is
the least integer such that R(k+1) =R(k). Then,
δi is the least integer such that Ci R(δi) �= 0.

Theorem 2. Consider the system (1), (2) and the
model (3), (4). Let (As, Bs, Cs) be right-invertible
and (Am, Bm) be reachable. Consider the sys-
tem (5), (6), defined according to Theorem 1. Let
δm denote the vector minimum delay of the model
and ρs the vector relative degree of the system.
Then,

δm ≥ ρs =⇒ H ⊆ V∗ + B,

Proof: For any i∈Iq, let δm,i ≥ ρs,i. For any
h(·)∈Hf , consider the corresponding effect, with
the initial condition xm(0)= 0, at the, generic,
i-th component of the output ym. By Defini-
tion 2, for any i∈Iq, t̄i ≥ δm,i exists, such that
ym,i(t̄i) �= 0 and ym,i(t)= 0 for all t < t̄i. Due
to functional controllability of (As, Bs, Cs), if
δm,i ≥ ρm,i, then ui(·)∈Uf exists, such that, with
the initial condition xs(0)= 0, ys,i(t)= ym,i(t) for
all t≥ t̄i, ys,i(t)= 0, for all t < t̄i, and ys,j(t) = 0,
for all t≥ 0, with j ∈Iq, j �= i. Consequently, by
superposition, for any input function h(·)∈Hf ,
which, with xm(0)= 0, produces a certain output
ym(t), t≥ 0, a control function u(·)∈Uf exists,
such that ys(t)= ym(t), for all t≥ 0. In the equiv-
alent measurable signal decoupling problem, this
means that for any h(·)∈Hf , u(·)∈Uf exists,
such that y(t)= 0, for all t≥ 0. In other words,
for any h(·)∈Hf , u(·)∈Uf exists, such that the
corresponding state trajectory, x(t), t≥ 0, starting
from x(0)= 0, is steered on an (A,B)-controlled
invariant, say V, such that V ⊆C and H⊆V +B.
Finally, since V ⊆V∗, the latter inclusion implies
H⊆V∗ +B.

The next results show that, on the assump-
tion that the structural condition of the equiva-
lent measurable signal decoupling problem holds,
the stabilizability condition, namely internal sta-
bilizability of the subspace Vm, the minimal
(A,B)-controlled invariant self-bounded with re-
spect to C, is implied by a straightforward condi-
tion involving the invariant zeros of the plant and
the poles of the model. In Theorem 3, as well as
in Theorem 2, the given system is assumed to be
right-invertible. Properties are reported without
proofs which can be found in (Marro and Zat-
toni, 2004).

Property 3. Consider the systems (1), (2), (3), (4)
and (5), (6), where (5), (6) is defined according
to Theorem 1. Let S∗

s = minS(As, Cs,Bs) and
S∗ = minS(A, C,B). Let S∗

s be a basis matrix of
S∗

s . Then, S∗ = im [S∗
s
� O]�.

Property 4. Consider the systems (1), (2), (3), (4)
and (5), (6), where (5), (6) is defined according to
Theorem 1. Let (As, Bs, Cs) be right-invertible.
Then, (A,B,C) is right-invertible.

Property 5. Consider the systems (1), (2), (3), (4)
and (5), (6), where (5), (6) is defined according to
Theorem 1. Let RV∗

s
= maxV(As,Bs, Cs)∩S∗

s and
RV∗ = maxV(A,B, C)∩S∗. Let RV∗

s
be a basis

matrix of RV∗
s
. Then, RV∗ = im [R�

V∗
s

O]�.

Property 6. Consider the systems (1), (2), (3), (4)
and (5), (6), where (5), (6) is defined ac-
cording to Theorem 1. Let (As, Bs, Cs) be
right-invertible. Let V∗

s = maxV(As,Bs, Cs) and
V∗ = maxV(A,B, C). Let V ∗

s be a basis ma-

trix of V∗
s . Then, V∗ = im

[
V ∗

s V1

O V2

]
, where

both V1 and V2 are non-zero matrices and
rank [V �

1 V �
2 ]� =nm.

Theorem 3. Consider the systems (1), (2), (3), (4)
and (5), (6), where (5), (6) is defined according to
Theorem 1. Let (As, Bs, Cs) be right-invertible.
Then, Z(A,B,C)=Z(As, Bs, Cs)�σ(Am).

Proof: Let V ∗ denote a basis ma-
trix of V∗ and let F be any real matrix
such that (A+ BF )V∗ ⊆V∗. Then, a matrix
X of appropriate dimension exists, such that
(A+ BF )V ∗ =V ∗X. According to Property 6,

V ∗ =
[

V ∗
s V1

O V2

]
, where V ∗

s is a basis matrix of

V∗
s and rank [V �

1 V �
2 ]� =nm. Thus, the previous

equation may also be written as

[
As + BsF1 BsF2

O Am

] [
Vs V1

O V2

]
=



[
Vs V1

O V2

] [
X1 X2

X3 X4

]
, (9)

where the structures A and B have been
taken into account and where F and X have
been partitioned according to V ∗. The up-
per block-triangular structure of A+ BF and
the particular structure of V ∗ in (9) imply
σ((A+ BF )|V∗)= σ((As + BsF1)|V∗

s
)�σ(Am). Fi-

nally, the thesis follows by virtue of Property 5.

Theorem 4. Consider the systems (1), (2), (3), (4)
and (5), (6), where (5), (6) is defined according
to Theorem 1. Let H⊆V∗ +B. Let (As, Bs, Cs)
be right-invertible, let Z(As, Bs, Cs)⊂C

�, and
let σ(Am)⊂C

�. Then, Vm, i.e. the minimal
(A,B+H)-controlled invariant such that Vm ⊆C
and H⊆Vm +B, is internally stabilizable.

Proof: Recall that H⊆V∗ +B implies
maxV(A,B+H, C)= maxV(A,B, C) (Basile and
Marro, 1992). Hence, Vm satisfies

Vm = maxV (A,B, C)∩minS (A, C,B+H),

RV∗ ⊆Vm ⊆V∗, and (A+ BF )Vm ⊆Vm for any
real matrix F such that (A+ BF )V∗ ⊆V∗. There-
fore, σ((A+ BF )|Vm/RV∗ )⊆σ((A+ BF )|V∗/RV∗ ).
Moreover,

σ((A+ BF )|V∗/RV∗ )=Z(As, Bs, Cs)�σ(Am),

due to Theorem 3, being (As, Bs, Cs) right-
invertible. In conclusion, Z(As, Bs, Cs)⊂C

� and
σ(Am)⊂C

� imply σ((A+ BF )|Vm/RV∗ )⊂C
�.

In the light of Theorems 3 and 4, a nonminimum-
phase system seems to prevent the synthesis of
an internally stable compensator. In fact, an in-
variant zero of the system outside the open unit
disc results into an unstable internal unassignable
eigenvalue of the subspace Vm, thus violating the
stabilizability condition of the equivalent mea-
surable signal decoupling problem. However, also
nonminimum-phase systems may be handled, at
the cost of modifying the model so as to include
the same unstable invariant zeros of the system,
with some further constraints as specified below.

Theorem 5. Consider the systems (1), (2), (3), (4)
and (5), (6), where (5), (6) is defined according to
Theorem 1. Let H⊆V∗ +B. Then, the invariant
zero structure of (A, [B H], C) is part of the ex-
ternal eigenstructure of Vm.

Proof: The invariant zero structure of
(A, [B H], C) is the internal unassignable eigen-
structure of maxV(A,B+H, C). Hence, it is part
of the external eigenstructure of the constrained
reachability subspace

maxV(A,B+H, C)∩minS(A, C,B+H).

Moreover, if H⊆V∗ +B, then

maxV(A,B+H, C)= maxV(A,B, C)

(Basile and Marro, 1992). This implies

maxV(A,B+H, C)∩minS(A, C,B+H)=Vm.

Theorem 6. Consider the system (7), (8) and its
dual, defined by the triple (A�, C�, B�). Then,
(A,B,C) and (A�, C�, B�) have the same invari-
ant zero structure.

Proof: Consider the system (7), (8)
and perform the similarity transformations
T = [T1 T2 T3 T4 ], where T1, T2, and T3 are s. t.
im T1 =RV∗ , im [ T1 T2 ] =V∗, im [ T1 T3 ] =S∗,
and U = [U1 U2 ], where U1 and U2 are s. t.
im U1 =B−1V∗, im U2 =

(
B−1V∗)⊥. The matrices

A′, B′, C ′, respectively corresponding to A, B, C
in the new bases, partitioned according to T and
U , have the structures

A′ =

⎡
⎢⎢⎣

A′
11 A′

12 A′
13 A′

14

O A′
22 A′

23 A′
24

A′
31 A′

32 A′
33 A′

34

O O A′
43 A′

44

⎤
⎥⎥⎦, B′ =

⎡
⎢⎢⎣

B′
11 B′

12

O O
O B′

32

O O

⎤
⎥⎥⎦,

C ′ =
[
O O C ′

13 C ′
14

]
.

Consider the dual triple in the new bases, i.e.
(A′�, C ′�, B′�). By simple inspection one gets

V∗
d = maxV(A�, C⊥,B⊥) = im V ′∗

d = im

⎡
⎢⎢⎣

O O
I O
O O
O I

⎤
⎥⎥⎦ .

Let G� be any real matrix s. t.

(A� +C�G�)V∗
d ⊆V∗

d .

In the new bases, let G′� = [G�
11 G�

21 G�
31 G�

41].
Then, A′�

G = A′� +C ′�G′� has the structure

A′�
G =

⎡
⎢⎢⎣

A′�
11 O A′�

31 O

A′�
12 A′�

22 A′�
32 O

A′�
G13 O A′�

G33 O

A′�
G14 A′�

G24 A′�
G34 A′�

G44

⎤
⎥⎥⎦ ,

where A′�
Gj4 =A′�

j4 + C ′�
14 G′�

j1 , with j = 1, 2, 3, 4,
A′�

Gj3 =A′�
j3 +C ′�

13 G′�
j1 , with j = 1, 3, and where

A′�
Gj3 =A′�

j3 +C ′�
13 G′�

j1 , with j = 2, 4, are set
to zero by imposing G′�

j1 =− (C ′�
13 )+A′�

j3 , with
j = 2, 4, respectively. Then, it is trivial to verify
that A′�

G V ′∗
d =V ′∗

d X holds, with

X =
[

A′�
22 O

A′�
G24 A′�

G44

]
.



Since X = (A� + C�G�)|V∗
d

is lower block-
triangular,

σ((A� +C�G�)|V∗
d
)= σ(A′�

22)�σ(A′�
G44).

Hence, the set of the internal unassignable eigen-
values of V∗

d , i.e. σ(A′�
22), matches that of V∗.

Theorem 7. Consider the systems (1), (2), (3), (4)
and (5), (6), where (5), (6) is defined ac-
cording to Theorem 1. Let H⊆V∗ +B. Let
(As, Bs, Cs) and (Am, Bm, Cm) be right- and
left-invertible. Let X be a real Jordan block,
part of the invariant zero structure of both
(As, Bs, Cs) and (Am, Bm, Cm). If matrices Vs,
Vm, and L of appropriate dimensions exist,
such that A�

s Vs −VsX =−C�
s L, B�

s Vs = O,
A�

m Vm −VmX = C�
m L, and B�

m Vm = O, then X
is part of the eigenstructure external to Vm.

Proof: Let X be part of the invari-
ant zero structure of both (As, Bs, Cs) and
(Am, Bm, Cm). Then, by virtue of Theorem 6,
it is also part of the invariant zero struc-
ture of (A�

s , C�
s , B�

s ) and (A�
m, C�

m, B�
m). Since

(As, Bs, Cs) and (Am, Bm, Cm) are right- and
left-invertible by assumption, (A�

s , C�
s , B�

s ) and
(A�

m, C�
m, B�

m) are right- and left-invertible, too.
Hence, matrices Vs, Vm, Ls, and Lm of appropri-
ate dimensions exist, s.t. A�

s Vs −VsX =−C�
s Ls,

B�
s Vs = O, A�

m Vm −VmX = C�
m Lm, and, finally,

B�
m Vm = O. In particular, if Ls = Lm = L, then

the above equations may also be written in com-
pact form as

[
A�

s O

O A�
m

][
Vs

Vm

]
−

[
Vs

Vm

]
X =−

[
C�

s

−C�
m

]
L, (10)

[
B�

s O

O B�
m

][
Vs

Vm

]
=

[
O
O

]
. (11)

Since the triple (A�, C�, [B H]�) is left-invertible
(as a consequence of Property 3 and duality),
equations (10),(11) imply that X is part of
the invariant zero structure of (A�, C�, [B H]�).
Hence, by virtue of Theorem 6, X is part of the
invariant zero structure of (A, [B H], C), which
implies that it is part of the eigenstructure ex-
ternal to Vm, due to Theorem 5.

In view of the previous results, a real Jordan block
X corresponding to an unstable invariant zero of
(As, Bs, Cs) does not necessarily imply violation
of the stabilizability condition. In fact, it may be
removed from the eigenstructure internal to Vm,
by replicating it as part of the invariant zero struc-
ture of the model, with a further constraint on the
so-called input distribution matrix L according to
Theorem 7. Also non-left-invertible systems may
be handled, by resorting to the techniques detailed
in (Zattoni, 2004).

3. OUTPUT FEEDBACK MODEL
MATCHING

Throughout this section, the system (1), (2) and
the model (3), (4) are considered, with the as-
sumptions made in Section 2 and the further as-
sumption that the model is square.

Problem 2. (Model Matching by Minimal-Order
Dynamic Output Feedback) Refer to Fig. 2. Let
Σs be ruled by (1), (2), with xs(0)= 0. Let Σm be
ruled by (3), (4), with xm(0)= 0. Let σ(As)⊂C

�

and σ(Am)⊂C
�. Design a linear dynamic regu-

lator Σc ≡ (Ac, Bc, Cc,Dc) of minimal order, such
that the loop is internally and externally stable
and, for all admissible h(t) (t≥ 0), ys(t)= ym(t)
for all t≥ 0.

The next Theorem 8 shows that, from the struc-
tural point of view, the output feedback model
matching problem is equivalent to a feedforward
model matching problem which refers to a suit-
ably modified model.

Theorem 8. Refer to Fig. 2. Let Σs be ruled by
(1), (2), with xs(0)= 0. Let Σm be ruled by
(3), (4), with xm(0)= 0. Then, Σc ≡ (Ac, Bc, Cc,Dc)
is a minimal-order regulator solving the struc-
tural output feedback model matching problem,
i.e. such that for all admissible h(t) (t≥ 0),
ys(t)= ym(t) for all t≥ 0, if and only if Σc is a
minimal-order compensator solving the structural
feedforward model matching problem for the mod-
ified model Σ′

m ≡ (Am + BmCm, Bm, Cm).

Proof: From the structural point of view, the
block diagram in Fig. 3 is equivalent to that shown
in Fig. 2. In fact, it is obtained by adding the same
signal ym(t) both to the input of the loop and to
the input of the model and taking into account
that, on the assumption that Σc guarantees that,
for all admissible h(t), (t≥ 0), y(t)= 0 for all t≥ 0,
it is ym(t)= ys(t) for all t≥ 0.

Thus, the dynamic output feedback model match-
ing problem is reduced to an equivalent feed-
forward model matching problem, as far as the
structural aspects are concerned. The next The-
orems 9 and 10 concern internal and external
stability of the loop, when the plant is minimum-
phase and nonminimum-phase, respectively. The
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Fig. 2. Block diagram for dynamic output feed-
back model matching.



minimal-order regulator Σc is designed in order
to solve the feedforward model matching problem
for the modified plant from the structural point of
view. This is achieved by following the procedure
detailed in (Zattoni, 2004), but leaving apart the
question of internal stabilizability of Vm.

Theorem 9. Consider the system (1), (2) and the
model (3), (4). Let (As, Bs, Cs) be right-invertible,
σ(As)⊂C

�, σ(Am)⊂C
�, and Z(As, Bs, Cs)⊂C

�.
Let Σc ≡ (Ac, Bc, Cc,Dc) be a minimal-order regu-
lator solving the structural output feedback model
matching problem according to Theorem 8. Then,
the loop is internally and externally stable.

Proof: Since the structural property, namely
y(t)= 0 for all t≥ 0, for any admissible h(t)
(t≥ 0), is preserved in the equivalence between
the block diagrams shown in Fig. 2 and in Fig. 3,
stability of the original model implies external
stability of the loop. As to internal stability, note
that, according to Theorem 3, the poles of Σc are a
subset of Z(As, Bs, Cs)�σ(Am +BmCm), where
σ(Am + BmCm) is not necessarily contained in the
open unit disc. This implies that Σc is not neces-
sarily stable. Nevertheless, the loop is internally
stable since cancellations outside the open unit
disc are prevented by the assumption that Σs is
minimum-phase.

Theorem 10. Consider the system (1), (2) and the
model (3), (4). Let (As, Bs, Cs) and (Am, Bm, Cm)
be right- and left-invertible. Let σ(As)⊂C

�,
σ(Am)⊂C

�, and

Z(As, Bs, Cs)∩σ(Am + BmCm)= ∅.

Let the unstable part of the invariant zero struc-
ture of (As, Bs, Cs) be replicated as part of the
invariant zero structure of (Am, Bm, Cm) accord-
ing to Theorem 7. Let Σc ≡ (Ac, Bc, Cc,Dc) be
a minimal-order regulator solving the structural
output feedback model matching problem accord-
ing to Theorem 8. Then, the loop is internally and
externally stable.

Proof: External stability is guaranteed by
stability of the model and preservation of the
structural property (y(t)= 0 for all t≥ 0, for any
admissible h(t), t≥ 0) in the equivalence between
the block diagrams in Figs. 2 and 3. As to internal
stability, since output feedback does not modify
the invariant zero structure of the model, the
unstable part of the invariant zero structure of
(As, Bs, Cs), reproduced in (Am, Bm, Cm) accord-
ing to Theorem 7, is also part of the invariant
zero structure of (Am +BmCm, Bm, Cm). Hence,
due to Theorem 7, it is not part of the inter-
nal unassignable eigenstructure of Vm, or, equiv-
alently, it is not part of the eigenstructure of Σc.
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Fig. 3. Block diagram for equivalent feedforward
model matching.

Thus, cancellations outside the open unit disc are
avoided for nonminimum-phase plants.

4. CONCLUSIONS

The design of a dynamic regulator of minimal
order which achieves model matching by output
feedback has been thoroughly accomplished in the
geometric context. The structural properties of
self-bounded controlled invariant subspaces have
been shown to be fundamental to both the mini-
mization of the regulator complexity and the sta-
bilization of the closed loop, particularly in the
presence of nonminimum-phase systems.
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