
INPUT-TO-STATE STABILITY OF SWITCHED
NONLINEAR SYSTEMS 1

Wei Feng and Ji-Feng Zhang

Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100080, China

Emails: fwsnakefa@126.com, jif@iss.ac.cn

Abstract: The input-to-state stability (ISS) problem is studied for switched
systems with infinite subsystems. By the method of multiple Lyapunov function,
a sufficient ISS condition is given based on a quantitative relation of the input
and the values of the Lyapunov functions of the subsystems before and after the
switching instants. In terms of the average dwell-time of the switching laws, some
sufficient ISS conditions are obtained for switched nonlinear systems and switched
linear systems, respectively. Copyright c©2005 IFAC

Keywords: Switched system, input-to-state stability, Lyapunov function,
dwell-time

1. INTRODUCTION

Since the performance of a real control system
is affected more or less by uncertainties such as
unmodelled dynamics, parameter perturbations,
exogenous disturbances, measurement errors etc.,
the research on robustness of control systems
do always have a vital status in the develop-
ment of control theory and technology. Aiming
at robustness analysis of nonlinear control sys-
tems, a new method from the point of view of
input-to-state stability (ISS), input-to-output sta-
bility (IOS) and integral input-to-state stability
(iISS) are developed and a series of fundamen-
tal results centralizing on the theory of ISS–,
IOS–Lyapunov functions are obtained by many
scholars (Sontag et al., 1989, 1995, 1996, 2001;
Lin et al., 1996; Praly et al., 1996; Angeli et
al., 2000, 2003). Recently, Mancilla-Aguilar and
Garćıa applied the idea to studying the robustness
of switched nonlinear (SNL) systems of the form
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ẋ(t) = fi(x(t), u(t)) (i ∈ I, where I is the index
set) (Mancilla-Aguilar et al., 2001).

For switched systems, although lots of results have
been presented, they mainly focus on the problems
of stability, controllability, observability and sta-
bilization control (Hespanha et al., 1999; Liberzon
et al., 1999; Sun et al., 2002). For robustness study
of such systems, the relevant literature is not rich,
and (Mancilla-Aguilar et al., 2001) seems the only
one on the ISS of SNL systems, to our knowledge.

In this paper, we will investigate the ISS of general
SNL systems (including the case where there is no
common Lyapunov function). Unlike the existing
results, which mainly focus on establishing ISS
converse theorems for nonlinear systems (Sontag
et al., 1989, 1995, 1996), by opening out the char-
acteristic of SNL systems, we aim at presenting
some sufficient ISS conditions for SNL systems,
including for instance, the relation of the ISS
and the average dwell-time of the switching law.
Precisely, we will investigate SNL time-varying
systems, which may involve in infinite subsystems.
In this case, switching among different subsystems



may lead to discontinuity of the system func-
tion, and dissatisfies the continuity assumption re-
quired by (Sontag et al., 1989, 1995, 1996). Thus,
the results in (Sontag et al., 1989, 1995, 1996)
cannot be generalized to general SNL systems
directly. In some special cases, for instance, where
there exists a common ISS–Lyapunov function
(CISSLF), a sufficient and necessary ISS condition
of SNL systems with arbitrary switching laws is
given (Mancilla-Aguilar et al., 2001) under the as-
sumption that fi(x, u) is uniformly (with respect
to i) locally Lipschitz continuous on x, u. Here, by
using the methods of multiple Lyapunov function
and average dwell-time, some sufficient ISS con-
ditions are given for general SNL systems, which
may have no CISSLF. The ISS–Lyapunov func-
tions of the subsystems are allowed to be different
from each other rather than simply assuming the
existence of a CISSLF. Besides, the uniformity
assumption on the local Lipschitz continuity of
fi(x, u) with respect to i is not required.

The remainder of this paper is organized as fol-
lows. Section 2 describes the problem to be in-
vestigated, and introduces some notations and
definitions. In Section 3, by using the method
of multiple Lyapunov function, a sufficient ISS
condition is given for general SNL systems. In
section 4, by using the method of average dwell-
time, some sufficient ISS conditions are presented
for SNL systems and switched linear (SL) sys-
tems, respectively. In section 5, some concluding
remarks are given.

2. NOTATIONS AND PROBLEM
FORMULATION

Consider the following SNL system

ẋ(t) = fσ(t,x(t))(t, x(t), u(t)), x(t0) = x0, (1)

where x(·) ∈ Rn and u(·) ∈ Rm are the system
state and input, respectively; and σ(·, ·) : [t0,∞)×
Rn → I (I is the index set, maybe infinite) is
the switching law and is righthand continuous
and piecewise constant on t; for every i ∈ I,
function fi : [t0, ∞) × Rn+m → Rn is continu-
ous with respect to t, x, u, uniformly locally Lips-
chitz continuous with respect to x, u, and satisfies
fi(·, 0, 0) ≡ 0.

Here, it is different from (Mancilla-Aguilar et al.,
2001), fi(t, x, u) is time-varying, and the unifor-
mity of the local Lipschitz continuity of fi(t, x, u)
is with respect to t rather than i.

Remark 1 By using two arguments t and x in
the switching function σ(t, x) we would like to
emphasize that the switching can depend on both
time and events determined by the status of the
system state x(t).

Throughout the paper, R+ denotes the real num-
ber set [0,∞); for a function γ(t) : R+ → R+,
γ ∈ K means that γ is continuous and strictly
increasing, and satisfies γ(0) = 0; γ ∈ K∞ means
that γ ∈ K and γ is unbounded; for a function
β(t, s) : R+ × R+ → R+, β ∈ KL means that
for any fixed s, β(t, s) ∈ K, and for any fixed
t, β(t, s) is continuous and decreases to zero as
s → ∞; for two functions ϕ(·) and χ(·), symbol
ϕ ◦ χ(·) denotes the composite function ϕ(χ(·));
∇ is the gradient operator as usual; | · | denotes
the Euclidean norm in Rn and the corresponding
induced matrix norm, and for a nonempty subset
M ⊂ Rn, |x|M 4

= infη∈M |x − η| (obviously, it
holds |x|{0} = |x| when M = {0}); Lm

∞ denotes
the set of all the measurable and locally essentially
bounded input u(·) ∈ Rm on [t0,∞) with norm

‖u‖ = sup
t≥t0

|u(t)| < ∞. (2)

For any given switching law σ(·, ·), initial condi-

tion x0 ∈ Rn, u(·) ∈ Lm
∞, x(t)

4
= xσ(t; t0, x0, u)

denotes the state trajectory of System (1) with
the maximal existing interval [t0, Tσ), where the

constant Tσ
4
= Tσ(t0, x0, u) ≤ ∞.

Definition 1 Consider the following general non-
linear system

ω̇(t) = g(t, ω(t), v(t)), ω(t0) = ω0, (3)

where function g : [t0,∞)× Rn+m → Rn satisfies

g(·, 0, 0) ≡ 0. If the trajectory ω(t)
4
= ω(t; t0, ω0, v)

of (3) is defined well on [t0,∞) for every ω0 ∈ Rn

and v ∈ Lm
∞, then the system is called forward

complete. For a closed set M⊂ Rn, if System (3)
is forward complete for every ω0 ∈ M, v ∈ Lm

∞,
and ω(t) ∈M, ∀t ≥ t0, then M is called a closed
invariant set of System (3).

Remark 2 By Definition 1, if System (1) is
forward complete for any σ(t, x), then all of the
subsystems are forward complete.

Remark 3 Obviously, if M is a closed invariant
set of all subsystems of System (1), then it is a
closed invariant set of system (1), too.

Definition 2 (Sontag, 1989) For the forward
complete system (3) and its closed invariant set
M⊂ Rn, the system (3) is called (globally) input-
to-state stable (ISS) with respect to M, if there
exist two functions β ∈ KL and γ ∈ K such that
for all ω0 ∈ Rn\M, v ∈ Lm

∞ and t ≥ t0,

|ω(t; t0, ω0, v)|M ≤ β(|ω0|M, t− t0)+γ(‖v‖). (4)

Definition 3 (Sontag et al., 1995) For the forward
complete system (3) and its closed invariant set
M ⊂ Rn, a smooth function Vg(t, ξ) : [t0,∞) ×
Rn → R+ is called an ISS-Lyapunov function of
the system (3) with respect to M ⊂ Rn, if there



exist functions α, α ∈ K∞, α, χ ∈ K such that for
all ξ ∈ Rn\M, µ ∈ Rm and t ≥ t0,

α(|ξ|M) ≤ Vg(t, ξ) ≤ α(|ξ|M), (5)

|ξ|M ≥ χ(|µ|)⇒ ∂Vg(t, ξ)
∂t

+∇Vg(t, ξ) · g(t, ξ, µ)

≤ −α(|ξ|M). (6)

For short, they will be denoted as (Vg;α, α, α, χ)
in the sequel.

3. ISS CONDITIONS BASED ON MULTIPLE
LYAPUNOV FUNCTIONS

In this section, by using the multiple Lyapunov
function method, sufficient ISS conditions are ex-
plored for SNL systems. For simplicity of expres-
sion, we denote the switching instants of switching
law σ(t, x) by t1<t2<· · ·<tk<· · · , and let σ(tl,
x(tl))=il.

Lemma 1 For the forward complete system (3)
and its closed invariant set M⊂ Rn, if the system
(3) has an ISS-Lyapunov function (Vg;α, α, α, χ)
such that (5)-(6) hold for all ξ ∈ Rn\M, µ ∈ Rm

and t ≥ t0, then there exists a C1 function ρ ∈ K∞
depending only on α and α such that

∂Wg(t, ξ)
∂t

+∇Wg(t, ξ) · g(t, ξ, µ) ≤ −Wg(t, ξ)

for Wg(t, ξ) ≥ χ(|µ|), where Wg(t, ξ) = ρ◦Vg(t, ξ)
and χ(·) = ρ ◦ α ◦ χ(·) ∈ K.

This lemma can be regarded as a corollary of the
Remark 2.2 of (Sontag and Wang, 2001).

Lemma 2 For the forward complete system (1),
suppose that M⊂ Rn is a closed invariant set of
System (1). If for each i ∈ I, subsystem fi(t, x, u)
has an ISS-Lyapunov function (Vi;αi, αi, αi, χi)

such that α(·) 4= supi∈Λ αi(·) ∈ K∞ and

max
{
Vil−1(tl, x(tl)), α ◦ χ(‖u‖)}

≥ Vil
(tl, x(tl)), (7)

then there exists a common time-instant t∗σ
4
=

t∗σ(t0, x0, u(t)) such that

(t, x(t)) /∈ Sσ(t,x(t)),∀t ∈ [t0, t∗σ), (8)

(t, x(t)) ∈ Sσ(t,x(t)),∀t ∈ [t∗σ,∞), (9)

where Si=
{
(t, ξ): Vi(t, ξ)≤α◦χ(‖u‖)}, i∈I, and l∗

is the largest integer l such that tl ≤ t∗σ(t0, x0, u).

Proof By the claim in Lemma 2.14 of (Sontag
et al., 1995), for the subsystem fil

(t, x, u) on the
interval [tl, tl+1), there exists

t′il
, t′il

(tl, x(tl), u) ≥ tl (10)

such that (t, x(t)) ∈ Sil
for all t ≥ t′il

, and
(t, x(t)) /∈ Sil

for all t < t′il
.

If tl+1 < t′il
for l = 0, 1, 2, · · · , then (t, x(t)) /∈

Sil
(l = 0, 1, 2, · · · ) for all t ≥ t0. In this case, set

t∗σ = ∞. Otherwise, there exists a nonnegative
integer l0 such that t′il0

≤ tl0+1. Let

l∗ = min0≤l≤l0{l : t′il
≤ tl+1}, t∗σ = t′il∗ .

Then we have (8), and (t, x(t)) ∈ Sil∗ for all
t ∈ [t∗σ, tl∗+1). Particularly, by the continuity of
the state trajectory x(t) and the function Vi(t, x)
(i ∈ I) we have (tl∗+1, x(tl∗+1)) ∈ Sil∗ . Thus from
(7) it follows that

Vil∗+1(tl∗+1, x(tl∗+1)) ≤ α ◦ χ(‖u‖).
This together with (10) implies that t′il∗+1

= tl∗+1.
Therefore,

(t, x(t)) ∈ Sil∗+1 , ∀t ∈ [tl∗+1, tl∗+2).

Repeating the above process for l = l∗ + 2, l∗ +
3, · · · , one can get (9). ¤
Theorem 1 Consider the forward complete sys-
tem (1). Suppose thatM⊂ Rn is its closed invari-
ant set, and the switching instants of the switching
law σ(t, x) are t1 < t2 < · · · < tk < · · · . If there
exists ISS-Lyapunov function (Vi;αi, αi, αi, χi) of
subsystem fi(t, x, u), i ∈ I, such that

(i) α, α ∈ K∞ and α, χ ∈ K, where α(·) ,
infi∈I αi(·), α(·) , supi∈I αi(·), α(·) , infi∈I
αi(·) and χ(·) , supi∈I χi(·);

(ii) (7) holds at each switching instant tl (l =
0, 1, 2, · · · ),

then System (1) is input-to-state stable.

Proof First, by Definition 3 and condition (i), for
all ξ ∈ Rn\M, µ ∈ Rm and t ≥ t0, we have

α(|ξ|M) ≤ Vi(t, ξ) ≤ α(|ξ|M), ∀i ∈ I,

|ξ|M ≥ χ(|µ|)⇒ ∂Vi(t, ξ)
∂t

+ DVi(t, ξ) · fi(t, ξ, µ)

≤ −α(|ξ|M), ∀i ∈ I; (11)

and by (Praly & Wang, 1996), we know that there
exists a C1 function ρ ∈ K∞ depending only on α
and α such that ρ̇(r)α◦α−1(r) ≥ ρ(r),∀r ≥ 0. Let
Wi(t, ξ) = ρ ◦Vi(t, ξ) and χ(‖u‖) = ρ ◦α ◦χ(‖u‖).
Then, by Lemma 1 we have for all i ∈ I,

ρ ◦ α(|ξ|M) ≤ Wi(t, ξ) ≤ ρ ◦ α(|ξ|M), (12)

Wi(t, ξ) ≥ χ(‖u‖) ⇒ dWi(t, ξ)
dt

≤ −Wi(t, ξ). (13)

By Lemma 2, there exists t∗σ such that (8)-(9)
hold. Then from (8)- (9) and the definition of
Wi(t, ξ) it follows that

Wσ(t,x(t))(t, x(t)) > χ(‖u‖), ∀t ∈ [t0, t∗σ), (14)

Wσ(t,x(t))(t, x(t)) ≤ χ(‖u‖), ∀t ∈ [t∗σ,∞). (15)

This together with (13)-(14) gives



dWσ(t,x(t))(t, x(t))
dt

< −Wσ(t,x(t))(t, x(t)) (16)

for t ∈ [t0, t∗σ). Hence, for t ∈ [tl∗ , t∗σ) we get

Wil∗ (t, x(t)) ≤ Wil∗ (tl∗ , x(tl∗))e−(t−tl∗ ), (17)

and for l = 0, 1, · · · , l∗ − 1,

Wil
(tl+1, x(tl+1)) ≤ Wil

(x(tl), tl)e−(tl+1−tl). (18)

From (7)-(8), the definition of Wi(t, ξ), (14) and
(13) it follows that for l = 1, 2, · · · , l∗,

Wil
(tl, x(tl)) ≤ Wil−1(tl, x(tl)). (19)

Thus, by (17), (18)-(19) we have

Wσ(t,x(t))(t, x(t)) ≤ · · ·
≤max

{
Wi0(t0, x(t0))e−(t−t0), χ(‖u‖)

}
.

This together with (12) and (15) leads to

ρ◦α(|x(t)|M) ≤ max{ρ◦α(|x0|M)e−(t−t0), χ(‖u‖)}
Let β(r, s) = α−1 ◦ ρ−1

(
ρ(α(r))e−s

)
and γ(r) =

α−1 ◦ α ◦ χ(r). Then β ∈ KL, γ ∈ K and

|x(t)|M ≤ β(|x0|M, t− t0) + γ(‖u‖), ∀t ≥ t0.

Thus, the system (1) is input-to-state stable. ¤
Remark 4 Condition (ii) of Theorem 1 says
that the energy of the system should not be
increasing at switching instants. This is because
that the ISS is a global property holding for all
t ≥ t0 with respect to x(t0) = x0 and u(t),
rather than a limit-sup property. Otherwise, for
instance, if lim supt→∞ |x(t)|M is considered, then
the condition can be relaxed to that: (7) holds
after finite switching instants.

Remark 5 From the proof of Theorem 1 we see
that β ∈ KL and γ ∈ K are independent of
the concrete choice of σ(·, ·). In other words, the
switched nonlinear system (1) is ISS for all σ(·, ·)
satisfying (7).

Corollary 1 For the forward complete system (1),
suppose that M ⊂ Rn is its closed invariant set,
and the switching instants of switching law σ(t, x)
are t1 < t2 < · · · < tk < · · · . Under the conditions
and notations of Theorem 1, if there are positive
constants k1 < k2, k3, p such that

α(r) = k1r
p, α(r) = k2r

p, α(r) = k3r
p, ∀r ≥ 0,

then system (1) is input-to-state stable.

Corollary 2 Consider the forward complete sys-
tem (1) and suppose that M ⊂ Rn is its closed
invariant set and the index set I = {1, · · · , N}
with N < ∞. If there exist ISS-Lyapunov function
(Vi, αi, αi, αi, χi), i ∈ I, such that

max
{
Vil−1(tl, x(tl)), α1 ◦ χ(‖u‖), · · · ,
αN ◦ χ(‖u‖)} ≥ Vil

(tl, x(tl)), l = 0, 1, · · ·
then System (1) is input-to-state stable.

Proof Let

α(·) = min
1≤i≤N

αi(·), α(·) = max
1≤i≤N

αi(·),
α(·) = min

1≤i≤N
αi(·), χ(·) = max

1≤i≤N
χi(·).

Then by the definition of ISS-Lyapunov function
we have α, α ∈ K∞, and α, χ ∈ K. This means
Conditions (i)-(ii) of Theorem 1 hold. Thus, sys-
tem (1) is input-to-state stable. ¤

4. ISS CONDITIONS BASED ON THE
AVERAGE DWELL-TIME

In this section, we will use the concept of average
dwell-time to get some sufficient ISS conditions
for both SNL systems and switched linear (SL)
systems.

Definition 4 (Hespanha et al., 1999) For any
given constants τ∗ > 0 and N0, let Nσ(s, t) denote
the switch number of σ(t, x) in [s, t), ∀t > s ≥ t0,
and let

S[τ∗, N0] =
{

σ(·, ·) : Nσ(s, t) ≤ N0 +
t− s

τ∗
,

∀t > t0,∀s ∈ [t0, t)
}

.

Then τ∗ is called the average dwell-time of S[τ∗,

N0], and τσ
4
= sup

t≥t0

sup
t>s≥t0

t−s
Nσ(s,t)−N0

is called the

average dwell-time of σ(·, ·).

4.1 ISS analysis of SNL systems

Theorem 2 For the forward complete system (1),
suppose that M ⊂ Rn is its closed invariant set,
and switching instants of switching law σ(t, x) are
t1 < t2 < · · · . If there are ISS-Lyapunov function
(Vi;αi, αi, cVi, χi) of subsystem fi(t, x, u)(i ∈ I)
and constants c > 0, η0 ≥ 1, such that for all
ξ ∈ Rn\M, µ ∈ Rm and t ≥ t0,

α(|ξ|M) ≤ Vi(t, ξ) ≤ α(|ξ|M); (20)

|ξ|M ≥ χ(|µ|) ⇒ ∂Vi(t, ξ)
∂t

+∇Vi(t, ξ) · fi(t, ξ, µ)

≤ −c Vi(t, ξ), (21)

and for l = 0, 1, 2, · · · ,

max
{

η0Vσ(tl−1,x(tl−1))(tl, x(tl)), α ◦ χ(‖u‖)
}

≥ Vσ(tl,x(tl))(tl, x(tl)), (22)

then System (1) is input-to-state stable for all σ ∈
S0

[
ln η0

c , N0

]
,

{
σ(·, ·) ∈ S[τ∗, N0] : τ∗ > ln η0

c

}
.

The proof is omitted.



Remark 6 For η0 ≥ 1, the condition (22) in
Theorem 2 is obviously weaker than the condition
(7) in Theorem 1. This includes the case where the
energy of the subsystem after a switching instant
is greater than that of the subsystem before the
switching instant.

4.2 ISS analysis of SL systems

In this subsection, we will investigate SL systems
of the form{

ẋ(t) = Aσ(t,x(t))x(t) + Bσ(t,x(t))u(t),
x(t0) = x0,

(23)

where Ai ∈ Rn×n, Bi ∈ Rn×m are constant
matrices for each i ∈ Λ, respectively.

In the sequel, for any n×n matrix A, JA denotes
the Jordanian normal form of A, η(A) is the
largest real part of the eigenvalues of A, and
MM (A) and Mm (A) are the largest and smallest
singular values of matrix A, respectively.

For a given matrix set A ⊂ Rn×n, A1 denotes
the set of all stable matrices of A, A2 denotes
A \ A1. Noticing that η(A) depends continuously
upon the parameter of A, when A1 is compact, we
have maxA∈A1 η(A) < 0 and

∣∣∣ max
A∈A1

η(A)
∣∣∣ = min

A∈A1

∣∣∣η(A)
∣∣∣.

In particular, when the number of all stable ma-
trices in A is finite and greater than zero, we have
maxA∈A1 η(A) < 0.

Proposition 1 For any given matrix set A ⊂
Rn×n, if A and A1 are compact, and A1 is
nonempty, then for any ε ∈ (0,minA∈A1 |η(A)|),
there exists a constant M(ε) > 0 such that

|eAt| ≤ λε(A)eaε(A)t, ∀A ∈ A, ∀t ≥ 0, (24)

λε(A) , max
A∈A

λε(A) < ∞ (25)

where λε(A),
√

M(ε)MM (P (A))
Mm(P (A)) > 0, aε(A)=η(A)

+ε, P (A) is n× n nonsingular matrix satisfying

A = P (A)JAP (A)−1.

The proof is omitted.

Now, we study the ISS property of the SL system
(23).

For system (23), let A = {Ai, i ∈ I} ⊂ Rn×n

and B = {Bi, i ∈ I} ⊂ Rn×m, assume that A
and B are compact, and the subset A1 consisting
of all the stable matrices of A is nonempty and
compact. For any given ε ∈ (0,minA∈A1 |η(A)|),
define aε(A) and λε(A) as in Proposition 1, and
set {

a−ε (A) = minA∈A1 |aε(A)|,
a+

ε (A) = max
{
0, maxA∈A aε(A)

}
,

(26)

b0(B) = max
Bi∈B

|Bi|, Mε = e(1+N0) ln λε(A). (27)

For a given switching law σ(·, ·) and a time interval
[s, t), let T+

σ (s, t) and T−σ (s, t) be the total time
of system (23) running on stable subsystems and
unstable subsystems in [s, t), respectively; and for
any a∗ ∈ (0, a−ε ] and τ∗ > 0, define

S[a∗, τ∗;A]

=
{

σ : σ ∈ S[τ∗, N0], τσ > τ∗ and

sup
t≥u≥t0

T+
σ (s, t)

T−σ (s, t)
≤ a−ε (A)− a∗

a+
ε (A) + a∗

}
,

where the average dwell-time τσ of σ(·, ·) is given
by Definition 4.

In the sequel, for simplicity of expression, we will
drop the arguments of λε(A), a−ε (A), a+

ε (A) and
b0(B), and denote them by λε, a

−
ε , a+

ε and b0,
respectively.

Theorem 3 For SL system (23), assume that A
and B are compact, and the subset A1 consisting
of all the stable matrices of A is nonempty and
compact. Then for any given ε ∈ (0, min

A∈A1
|η(A)|)

and a∗ ∈ (0, a−ε ], there exists τ∗ ≥ 1
a∗ lnλε such

that

(i) for all σ(·, ·) ∈ S[a∗, τ∗;A], System (23) is
forward complete, and

(ii) System (23) is ISS if and only if the control-
free system ẋ(t) = Aσ(t,x(t))x(t) is asymptotically
stable.

Proof Part (i) and the necessity of Part (ii) are
obvious. So, below we need only to show the
sufficiency.

For any given t ≥ t0, assume that in [t0, t), System
(23) has switching instants t1 < t2 < · · · < tj . Let
σ(tl, x(tl)) = il (l = 0, 1, · · · , j). Then the solution
of system (23) can be expressed as

xσ(t) = Φ(t, t0)x0 +
∫ t

t0

Φ(t, s)Bσ(s,x(s))u(s)ds,

(28)
where for s ∈ [tl, tl+1),

Φ(t, s) = eAij
(t−tj)eAij−1 (tj−tj−1) · · · eAil

(tl+1−s).

We first show that for any given constant a∗ ∈
(0, a−ε ], τ∗ ≥ ln λε

a∗ , and σ(·, ·) ∈ S[a∗, τ∗;A], there
are a > 0 and M > 0 such that

|Φ(t, s)| ≤ Me−a(t−s), ∀t ≥ s ≥ t0. (29)

Noticing that

Nσ(s, t) =
{

j − l, tl ≤ s < tl+1, l = 0, · · · , j − 1;
0, tj ≤ s < t,

we have λε = e[1+Nσ(s,t)] ln λε for s ∈ [tj , t);
and λj−l+1

ε = e[1+Nσ(s,t)] ln λε for s ∈ [tl, tl+1)



(l = 0, 1, · · · , j − 1). In particular, Nσ(t0, t) = j
and λj+1

ε = e[1+Nσ(t0,t)] ln λε . Thus,

|Φ(t, s)| ≤ λj−l+1
ε eaε(Aij

)(t−tj) · · · eaε(Ail
)(tl+1−s)

≤ e[1+Nσ(s,t)] ln λεea+
ε T+

σ (s,t)−a−ε T−σ (s,t).

By the definition of S[a∗, τ∗;A], for any given σ ∈
S[a∗, τ∗;A], we have a+

ε T+
σ (s, t) − a−ε T−σ (s, t) ≤

−a∗(t−s). This together with Nσ(s, t) ≤ N0+ t−s
τσ

and τσ > τ∗ ≥ ln λε

a∗ implies that a
4
= a∗ − ln λε

τ∗ >
0. Then, by some straightforward calculations we
have

|Φ(t, s)| ≤ Me−a(t−s), ∀s ∈ [t0, t),

where M = e(1+N0) ln λε . Thus, (29) is true, which
together with (28) gives

|x(t)| ≤ Me−a(t−t0)|x0|+ Mb0

a
‖u‖.

Let β(r, s) = Me−asr and γ(r) = Mb0
a r. Then

β(·, ·) ∈ KL, γ(·) ∈ K∞, and

|x(t)| ≤ β(|x0|, t− t0) + γ(‖u‖),
i.e. system (23) is input-to-state stable. ¤
Remark 7 Comparing Theorem 3 with Theorem
2, one can see that for SL system case, some
of the subsystems of system (23) are allowed
to be unstable. But for SNL systems, all of its
subsystems are required to be stable, since the
degree of instability of nonlinear systems is hard
to be characterized.

Remark 8 By Theorem 3, the ISS of SL system
(23) is independent of the concrete choice of σ(·, ·)
in S[a∗, τ∗;A].

5. CONCLUSIONS

In this paper, the ISS of SNL system and SL
system are investigated, respectively. The main re-
sults can roughly be divided into two classes. One
is based on multiple Lyapunov function method,
and the other is based on (average) dwell-time
method. Firstly, by using the method of multiple
Lyapunov function, a sufficient ISS condition is
given for general SNL systems based on a quan-
titative relation of the control and the values of
the Lyapunov functions of the subsystems before
and after the switching instants. Here, the ISS–
Lyapunov functions of the subsystems are allowed
to be different from each other rather than sim-
ply assuming the existence of a CISSLF. So, the
condition is sufficient not only for the switched
systems possessing a CISSLF, but also sufficient
for the switched systems without any CISSLF.
Secondly, by employing the method of the av-
erage dwell-time, some ISS sufficient conditions
are given for SNL systems and SL systems, re-
spectively. Among others, the condition on SNL

systems is characterized by the size of the dwell-
time, and that on switched linear systems is char-
acterized by the average dwell-time and the ratio
of the total time that the system runs on unstable
subsystems to the total time that the system runs
on stable subsystems.
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