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Abstract: A hyper-flexible body is a continuum mechanical object with infinitely
many kinematic degrees of freedom which can not be appropriately modeled as
elastic bodies nor fluid. In this paper, manipulation of a hyper-flexible body is
considered. Although we have only a few control input for the infinite-dimensional
system of a hyper-flexible body, we provide an illustrative control example where
we can achieve damping injection to a planar cable-like hyper-flexible body by
only translational acceleration input at its one end. The control law is derived
by the passivity approach based on the port-controlled Hamiltonian system
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1. INTRODUCTION

A hyper-flexible body (An HFB, for short) is a
continuum mechanical object with infinitely many
kinematic degrees of freedom which can not be
appropriately modeled as elastic bodies nor fluid.
We can easily find this category of objects around
us. Examples include clothes such as a jacket,
a handkerchief and a necktie; papers such as a
newspaper and a copy paper; leathers such as a
bag and a glove; and plastic, foods, plants and
so on. Considering manipulation of HFBs, we
have to note the following properties of HFBs as
controlled systems:

e The number of kinematic degrees of freedom
of an HFB is wnfinite essentially. Moreover,
an HFB is not necessarily modeled as a linear
system, because we often have a wide ranges
of displacement at each kinematic degrees

of freedom. Its nonlinear nature should be
considered.

e As a matter of practice, 1t is impossible
to actuate all the degrees of freedom inde-
pendently and simultaneously, which means
an HFB is properly modeled as a hyper-
underactuated system.

e As a matter of practice, 1t is impossible
to obtain the sensory information about all
the degrees of freedom independently and
simultaneously, which means an HFB is the
system of highly-limited-sensing.

Taking the above properties of HFBs into account,
it seems hopeless to manipulate the system. It is,
however, worth noticing that humans can manip-
ulate such an object dexterously, where we can see
the possibility to build up a useful theory for HFB
systems.



The purposes of this research are (1) to find useful
applications of systems with hyper-flexible bodies,
and (2) to establish a useful manipulation theory
of hyper-flexible bodies.

To achieve the goals above, we first try to find suc-
cessful control examples of hyper-flexible systems,
and then extract some essentials of the systems
from phenomena of those examples.

It is reasonable to categorize hyper-flexible sys-
tems into the following classes based on the topo-
logical structure in three-dimensional Euclidean
space:

e One-dimensional Structure: strings, cords,
cables, limbs and trunks of vertebrates

e Two-dimensional Structure: clothes, papers,
nets, human hands

e Three-dimensional Structure: food such as
dough, clay, skins

We regard the class of one-dimensional structure
as the most important class of hyper-flexible sys-
tems to be analyzed from the following reasons:

e The kinematic equations of hyper-flexible
systems with one-dimensional structure can
be expressed by Frenet-Serret formula of a
spatial curve which represents the geometric
feature of a curve simply (Kobayashi, 1995).
This enables us to interpret the meanings of
various related values and equations geomet-
rically.

e The exact continuum dynamic equations of
hyper-flexible bodies with one-dimensional
structure are available. The dynamic equa-
tions are derived from those of a serial-rigid
chain by the limit operation that the num-
ber of its degrees of freedom goes to infinity
(Mochiyama and Suzuki, 2003a). Thus, we
can discuss control problems based on its
exact dynamics.

e There are some interesting manipulation ex-
amples of hyper-flexible systems in this one-
dimensional structure, such as casting in fish-
ing and top whipping.

We can find some related researches about ma-
nipulation of a cable-like hyper-flexible body with
one dimensional structure.

Arisumi et al. proposed an excellent idea of cast-
ing manipulation inspired by casting in fishing
(Arisumi et al., 1999). This casting manipula-
tion is the pioneering example of manipulation
of hyper-flexible bodies. Ichikawa and Hashimoto
regarded a cable as a planar serial-rigid chain,
and verified the effectiveness of their identifi-
cation and position control methods by exper-
iments (Ichikawa and Hashimoto, 2001). Waka-
matsu et al. proposed a planning method for knot-

ting or raveling manipulation of cable-like objects
(Wakamatsu et al., 2004).

In our research, we take the exact continuum
nature of the kinematics and dynamics of hyper-
flexible bodies into account, which 1s clearly differ-
ent point from the above related researches in the
past. This continuum treatment of hyper-flexible
bodies allows us to see physical and geometric
handling of values and equations appeared in con-
trol problems. We will see this later in this paper.

In this paper, damping control of a planar cable-
like hyper-flexible body 1s considered. In section
2, we show the kinematics and dynamics of a
planar cable. In section 3, a damping control
law 1s derived base on the passivity consideration
by using the port-controlled Hamiltonian system
representation. In section 4, the effectiveness of
the derived control law is verified by a numerical
simulation of a serial-rigid chain with 50 degrees
of freedom. In section 5, we summarize the results
of this paper.

2. PLANAR MOTION OF CABLES
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Fig. 1. Planar cable-like hyper-flexible body

In this paper, only the planar kinematics and
dynamics of a cable-like hyper-flexible bodies are
considered. More general models such as 3D case
can be found in (Mochiyama and Suzuki, 2003q)

2.1 Geometry and Kinematics

Let 6(o,t) € RN denotes the curvature of the
backbone curve which characterizes the shape of
a cable-like hyper-flexible body, where o € [0 ]
and ¢ € [0 o0) mean the arc length and the time
respectively. The constant [ is the total length of
the object. The one end of the object is fixed at



the base body, and the other end is free. Suppose
that we can move the base body in the horizontal
direction, and exert an acceleration ©v € R as a
control input to this base body. The direction of
the gravitational acceleration is in the direction
of the x-axis of the coordinate frame attached
at the base body. The gravitational acceleration
constant is represented by g. Let ¢(o,t) € R be the
angle between the tangent of the shape curve at
o

o and the x-axis. Note that ¢(o,t) = /H(U,t)dn.
0

In this research, we regard a one-dimensional
hyper-flexible body as a continuous chain of slices
with an infinitesimal width perpendicular to the
backbone curve. Let m(c) and I(c) be a mass and
inertia moment density around the z-axis of a slice
at o respectively. We assume that the center of
mass of the slice is on the backbone curve. This is
reasonable assumption for homogeneous and thin
ropes.

2.2 Lagrange Dynamics

The dynamics of a hyper-flexible body with one-
dimensional structure moving in a plane can be
expressed by

l
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where subscripts ¢ and ¢t stand for the 1st and 2nd
order partial derivatives with respect to the time
respectively (Mochiyama and Suzuki, 2003a). The
values M(o,n,t) € R, C(o,n,t) € R, G(o,t) € N
and U (o, t) € R are, respectively, the counterparts
of the row vectors of the inertial matrix and the
Coriolis matrix, the elements of the gravitational
torque vector, and the external torque appeared
in serial-rigid chain dynamics. These values are
defined as follows:
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Note that the system represented by (1) is infinite-
dimensional because the curve parameter ¢ con-
tinuously takes the value from 0 to ! along the
backbone curve. Moreover, the system described
above 18 hyper-underactuated because we have
only one input u in U (o, ) in spite of the infinite
dimensionality of the system. In this paper, we
ignore the position of the base body which is
obtained by taking integration on u twice.

Considering numerical simulation and hardware
implementation where we need to discretize our
model spatially along the backbone curve, it seems
reasonable to model a hyper-flexible system with
one-dimensional structure as a finite serial-rigid
chain from the beginning. Actually, Hashimoto et
al. modeled a string as a finite serial-rigid chain
in string manipulation (Ichikawa and Hashimoto,
2001). One of the benefit of our exact contin-
uum modeling of a hyper-flexible system is the
affinity with spatial geometry. For example, 6 in
(1), which is one of the most important variables
in this dynamics representation, is exactly the
curvature of the backbone curve of the flexible
object. Therefore, we can understand the values
and equations appeared in the kinematics, dynam-
ics and control geometrically, which will help us
to build up a user-friendly and flexible manipula-
tion theory. We have already derived the geomet-
ric interpretations of the inertia component M
and I' which defines the Coriolis component. See
(Mochiyama and Suzuki, 2002) for more details
about the geometric interpretations.

In the same manner as normal dynamics of a
serial-rigid chain, the positive definiteness and the
symmetry of the inertial component M and the
skew symmetry of M; — 2C hold for this hyper-
flexible system. See (Mochiyama and Suzuki,
2003b) for the proofs.



3. PASSIVITY-BASED CONTROL

In this paper, the control objective is to suppress
the oscillation of a cable-like hyper-flexible body
by the translational acceleration input at the one
end of the cable under gravitational influence. We
do not care the position of the moving base here.

3.1 Port-controlled Hamiltonian Representation

To achieve passivity-based control, we utilize
the port-controlled Hamiltonian representation
(van der Schaft, 2000) of the hyper-flexible system

as follows:

J(m(a,t))(;—g(a,t) + B(x(0,1))u,
(celod) (7)

x(o,t) =

where H(t) € R denotes the Hamiltonian of the
system, which 1s defined by the sum of the kinetic
energy K and the gravitational potential energy
P as follows:
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x(o,t) € R?, J(x(0,1)) € R?*? and B(z(o,1)) €
R? are given as follows:
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where g(0,1) € &t means the kinetic momentum of
the hyper-flexible system at ¢ defined by

o(o,t) ::/M(U,E’,t)ﬁt(g,t)dé’ (12)

3.2 Passwity

The system output energetically dual with the
input u, y € ¥ is

y:/é—H(U,t)B(w(U,t))dO' (13)

Then, the time derivative of the Hamiltonian
along the trajectory of the system can be calcu-
lated as

=yu , (14)

which shows that the system is passive from u to

y (Khalil, 2002).

Moreover, this system is zero-state detectable as
well (Khalil, 2002). See (Mochiyama and Suzuki,
2003%) for the proof.

The system output y is the time derivative of the
gravitational torque at the fixed end of the cable
(¢ = 0) divided by the gravitational acceleration
constant g. We can see the above fact by the
following calculation:
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The system output y is also related to the mass
center of the cable pcom(t). This value can be
represented by

l
pCOM = /
0
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where M is the total mass of the cable, p(c,?)
denotes the position vector between the base
origin and the point on the curve at ¢ viewed from
the base coordinate frame. The above expression
shows that the system output y is the horizontal
component of the time derivative of the mass
center of the cable multiplied by the total mass
M.

3.3 Damping Injection

For damping injection to the hyper-flexible sys-
tem, consider the following feedback control law:

u= —1(y) (17)

where ¢(+) is the function satisfying that ¢(0) = 0
and yi(y) > 0 for arbitrary y except zero. By this
control law, the time derivative of the Hamiltonian
along the trajectory becomes

Wy=-rww <o (9
which shows that dH/dt is negative semi-definite.
By the zero-state detectability of the system and
applying the infinite-dimensional version of the
LaSalle’s invariant principle (Michel and Wang,
1994; Luo et al., 1999), we expect that (o, t) —
0.

For the rigorous proof of the asymptotic stability
of the system, we need to properly select the func-
tional space in which the system is represented.

4. SIMULATION

For numerical simulations of the hyper-flexible
system, it is necessary to discretize the system not
only in time, but also in space along the backbone
of the cable i.e., discretization with respect to o.
In this study, we use a planar serial-rigid chain
with sufficiently many degrees of freedom as the
discretized model of the continuum hyper-flexible
cable.

4.1 Computational conditions

The planar serial-rigid chain used in this simula-
tion consists of the moving base, identical 50 rigid
bodies, and 50 one-degree-of-freedom rotational
joints which connect the base and the links in
series. The rigid bodies are identical in shape and
mass distribution. The total mass and length of

the cable, M and L, are of 1.0 [kg] and 1.0[m]
respectively. The mass of the moving base Mp is
of 34.4[kg]. We ignore the mass of the joints.

The space sampling is considered to be sufficient
because there are 50 joints for a 1.0-meter-long
cable, which means that we have a degree of
freedom at 0.02 [m] interval along the backbone
curve. On the other hand, the sampling time is of

0.001[s].

In the simulation, we have the following equation
of motion of the base in the horizontal direction:

Mpu=fg+ fu (19)

where fp denotes the horizontal (y-directional)
translational force of the base as the external
input and fas denotes the horizontal inertial force
generated by the motion of the cable. In the
control design, we ignore this far, because this is
negligible due to small mass of the cable compared
with the force exerted to the base. For small
far, the external input in the simulation fg 1s
proportional to the input in the control design
u. Of course, in the simulation we take fjs into
account rigorously to show that our simplification
is reasonable.

In the initial condition, the hyper-flexible cable
remains stationary on a straight line downward,
ie., @:(0,0) = 0,Vo € [0 {]. Then, we apply the
following disturbance input to the cable during
the first 2 seconds:

0 (0<t<0.5)

_J 100 (0.5<t<1.0)
5= 100 (1.0 <t < 1.5)
0 (1.5<t<2.0)

(20)

Fig. 2 shows the time graph of the input to the
cable (upper) and of the gravitational potential
energy of the cable P for the free motion 1i.e.,
no control after the time 2[s]. We can see the
periodic response of the potential energy by the
initial disturbance force.

4.2 Control

As shown in the previous section, the system
output y is the horizontal component of the time
derivative of the mass center of the cable multi-
plied by the total mass M. Then, in this simula-
tion where the discretized 50 dofs serial-rigid chain
model is used instead, we consider the following
value gy instead of the system output:

G M d (eT S m pCOM,z’)

—Ta\Y T M



input FBLN]

time t[s]

time tlz]

Fig. 2. Input signal (upper) and control-free re-
sponse of the potential energy (lower)

= %di (Ze pCOMz) (21)

where pcom,; € R3 is the position vector of
the center of mass of the ¢-th rigid body, and
m = 0.02[kg] stands for the mass of the link. Here
we consider the following control law:

w=—kMpj (22)

or equivalently

fB=—ky (23)

where £ 1s a positive constant. In this simulation,
the value of & is set as 100.0.

The lower graph of Fig. 3 shows the time response
of the gravitational potential energy P when we
apply the control law (22) after the time 2[s]. In
the same manner as Fig. 2, the upper time graph
shows the horizontal input force to the cable. We
can see the effective damping injection to the cable
by the control.

5. CONCLUSION

In this paper, we showed an illustrative control ex-
ample of dynamics manipulation of hyper-flexible
bodies. The authors believe that this simple ex-
ample is useful to connect real robot systems and
rigorous mathematical control theory to build up
a useful robotic manipulation theory. The next
step 1s to realize this phenomenon using a real
robotic system.
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