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Abstract: The problem of designing an on-line optimizing robust output-feedback (OF) 
controller for binary batch distillation columns with temperature measurements is 
addressed. The combination of optimality, passivity and detectability notions leads to an 
estimator-based material balance controller that, for an ample range of load compositions 
maximizes the profit and yields the prespecified product purity. The scheme has: (i) a 
criterion to choose the sensor number and locations, (ii) an event controller that decides 
the total reflux, start-up and partial reflux withdrawal periods, and (iii) a tracking 
controller that steers the batch distillation column motion along an on-line optimized 
path. The approach is applied to a previously studied example. Copyright © 2005 IFAC. 
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1 INTRODUCTION 

 
In the distillation process engineering field, it is 
known that batch columns offer advantages over the 
continuous ones, and that the transient nonlinear 
nature of batch columns gives rise to complex 
operation and control design problems (Muhrer et. al, 
1992). Basically, the operation and control problems 
have been addressed in sequential manner. First, the 
operation is designed via open-loop optimization 
(Mujtaba et. al, 1996), yielding a nominal output 
signal to be followed by means of a feedback control 
that is designed in a second stage, using either linear 
gain scheduled (Finefrock et. al, 1994), nonlinear 
model predictive (Bosley et. al, 1992), geometric 
(Barolo et. al, 1998) or adaptive (Li et. al, 2001) 
techniques. Recently, it has been proposed an 
approach for the simultaneous consideration of the 
batch operation and control design problems, by 
looking at the notions of stability, output 
controllability, passivity and detectability that 
underlie both problems (Alvarez et. al, 2004b). The 
approach has been applied to a semi-batch emulsion 
polymerization reactor (Alvarez et. al, 2004b), and to 
the nominal study of a binary batch distillation 
column without hydraulic dynamics, fixed load 
composition, and noiseless measurements (Alvarez 
et. al, 2004a). Even though the last study established 
the nominal solvability of the problem, its 
applicability requires the further consideration of 
robustness-oriented issues which are addressed in the 
present work: the behavior of the controller in the 
presence of measurement noise, high-frequency 
hydraulic dynamics, and load composition 

disturbances, as well as the choice of number and 
location of sensors. However, it is known that in 
distillation columns, hydraulic dynamics  and 
measurement noise limit the control behavior 
(Castellanos et. al, 2005b), especially in high-purity 
columns, and these considerations motivate the 
present robustness oriented study. 

 
In this work, the problem of designing an 

optimizing robust feedback controller for binary 
batch distillation columns with temperature 
measurements is addressed, including the choices of 
sensor number and locations. The combination of 
optimality, passivity and detectability notions leads 
to an estimator-based material balance controller 
that, for an ample range of load compositions 
maximizes the profit and yields the product purity 
within specifications. The sensor number and 
location choices follow from a nonlinear detectability 
analysis with testing via estimator implementation. 
The control scheme has a simple tuning scheme 
coupled with a batch motion stability criterion. The 
approach is applied to an early studied simulated 
example (Barolo et. al, 1998; Alvarez et. al, 2004a).  

 
2 CONTROL PROBLEM 

 
Consider the N-tray binary batch distillation column 
depicted in Fig. 1, with reboiler, condenser and an 
accumulator vessel to collect the distillate product. cF 
varies within the interval CF = [cF

-, cF
+], there are nT 

temperature measurements whose number and 
locations (s1,…,snT) are to be determined. At time t = 
0, a mixture of mL moles with composition cF is 



loaded. In its startup period [0, ts], the column is 
operated at  total  reflux (molar) rate R  = V, until the 
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Fig. 1. Batch distillation column and control system: 

accumulator (A), condenser (Cn), column (Co), 
controller (C), estimator (E), reboiler (Re), 
control (u = R), and measurement [y = (T0,..,Tm)'] 

 
time ts when the distillate composition cD(t) reaches 
the prescribed product value c-p. Then, cD(t) = c-p, is 
maintained by manipulating R and withdrawing 
distillate at a time-varying rate (V - R), until a given 
utility function, say 
J(t) = [Cpmp(t) – CLmL - ChλV∫o

tV(τ)dτ 

    - CcλR∫o
tR(τ)dτ]/(t + td) - CO, t ≥ ts, J

.
(tf) = 0  (1) 

reaches its maximum value at time tf. J is the utility 
($) per unit time, mp are the moles of collected 
product in the accumulator, Cp (or CL) is the product 
(or load) value per mole, Ch (or Cc) is the heating (or 
cooling) cost per heat unit, CO is the operation cost 
per unit time, td is the dead time between batches, 
and λV (or λR) is the approximated heat of 
vaporization (or condensation) in the reboiler (or 
condenser). Under standard assumptions, the 
composition and holdup dynamics are described by 
the nonlinear differential equation set (Muhrer et. al, 
1992): 

c. 0 = {R(c1 - c0) - V[Ε(c0) - c0]}/m0 := f0
c,  0 ≤ t ≤ tf 

c. i = {R(ci+1 - ci) - V[E(ci) - Ε(ci-1)]}/mi := fi
c, 1 ≤ i ≤ N-1 

c.N = {R(cD - cN) - V[Ε(cN) - E(cN-1)]}/mN := fN
c  

c.D = 0 if t ≤ ts, or V[Ε(cN) - cD]/mD:= fD
c ,  t > ts 

c.P = 0 if t ≤ ts or (V - R)(cD - cP)/mP := fp
c,  t > ts 

    cp(t0) = 0, cp(ts) = cD(ts) 
[c0(0), c1(0),…, cN(0), cD(0)]' = cF(1,…, 1)' 

cF ∈ [cF
-, cF

+] := CF 

m. 0 = R - V := f0
m,        m0(0) = mL 

m. i = L(mi+1) - L(mi),  L(mi) = a + (mi - b)λm := f i
m 

    mi(0) = mio,   1 ≤ i ≤ N 

m
.

p = 0, t ≤ ts or V - R := fp
m, t > ts,  

mp(t0) = 0, mp(ts) = 0 

J
.
 = [-J + Cp(V - R) - ChλVV - CcλRR]/(t + td):= fJ 

Jo = - (CLmL/td + CO)  
yi = β(ci) = Ti,     i = s1,…, snT

; 
R = V, 0 ≤ t ≤ ts; R ≤ V ts < t ≤ tf      
 

where ci is the light component mole fraction at the i-
th stage, Ti is the temperature at the si-th tray, m0 (or 
mp) is the boiler or product vessel molar holdup, L is 
the hydraulic function dependency on the tray 
holdup, Ε and β are respectively the nonlinear liquid-
vapor equilibrium and bubble-point functions, and λm 
is the individual tray characteristic frequency, nT is the 
number of temperature sensors and sn1

,…, snT
 are their 

locations. 
 
Since the hydraulic dynamics are considerably (thirty 
to one hundred times) faster than the composition 
dynamics, the control model must assume that the 
hydraulic dynamics are in quasi-static regime 
according to the boundary layer stable dynamics: 

m~
.

i = - λm (m~ i - m~ i+1 ) - R
.
(t)/λm,         (2) 

m~ i = mi - mi
*(t) , mi

*(t) ≈ [R(t) - a]/λm + b, 1 ≤ i ≤ N 
 
where m~ i is the holdup mi minus its quasi-static time-
varying value mi

*(t). in singularly perturbed (SP) 
form (Khalil, 2002), the column full dynamics is 
written as follows: 

x.  = f(x, uR, t) + qx(x, uR, t; m~), y = h(x) + qy(x; x~) (3) 
ue = (ts, tf)',  x(0) = xo,0 ≤ t ≤ tf  

m~
.

i = - λm (m~ i - m~ i+1 ) - R
.
 (t)/λm 

m~ i(to) = m~ io, 1 ≤ i ≤ N, m~ = (m~ 1,…, m~ N)' 

x~
.
 = qx(x, uR, t; m~),       x~(to) = x~o 

qx(x, uR, t; 0) = 0,  qy(x, uR, t; 0) = 0  
where 
x = (c0, ..., cN, cD, cP, m0, mP, J)',    
uR = R,    ue = (ts, tf)',  y = (y1, …, ynT

)'  
xo = [cL(1, ..., 1, 1)', 0, mL, 0, Jo]' := fo(cL, mL, Jo) 
h(x) = [β(cs1

),…, β(csnT
)] 

 
The term qx (or qy) accounts for the effective process 
(or measurement) noise, uR over (ts, tf] is the 
feedback control input, and ue is the feedback event 
control input which sets the total reflux-to-extraction 
regime switching time ts as well as the batch duration 
tf. Given the objective function J (1), the prescribed 
product composition c-P, the load composition 
variation interval CL, and the column reduced model 
[Eq. (3) with m~ = 0 and x~ = 0] 

x
.
 = f(x, uR, t),  y = h(x),    dim(x) = n   (4) 

ue = (ts, tf)',   x(0) = xo,   0 ≤ t ≤ tf 
 
our problem consists in designing a dynamic robust 
(i.e., passive) OF controller 

x
.

c = fc[xc, y(t)],        xc(to) = xco,   (5) 
  t ∈ [to, tf], ts = µs(xc),    tf = µf(xc) 

u = µ(xc): u = V, to ≤ t ≤ts;  u = µR(xc), ts < t ≤ tf 
 
so that for any load concentration cF ∈ CF: 
(i) the utility function J is maximum at tf: 
(ii) the product composition is at its nominal value 
(iii) sensor number and locations (S) must be found 

J
.
(tf) = 0,     cP(tf) = c-P,  c

.
P(tf) = 0,     (6a-c) 

nT =dim(y),    S = (sn1
,…, snT

) 
 

 



3 OPTIMAL STATE-FEEDBACK CONTROL 
 
Having as point of departure a previous study on the 
nominal version of the same batch column control 
problem (Alvarez et. al, 2004a), here are included 
three additional considerations: (i) the event control, 
(ii) a feedforward (FF) material balance controller is 
employed instead of a state-feedback (SF) one, and 
(iii) the presence of the parasitic hydraulic dynamics 
is accounted for in the dynamical behavior 
assessment. 
 
3.1 Stability 
Since a batch column is described by the finite-time 
motion x(t) (3) or solution of a non-autonomous 
dynamical system (2), the standard definitions of 
asymptotic stability of critical points, which are 
appropriate for continuous processes, cannot be 
formally applied to the batch case, and the same is 
true for the controllability and detectability 
properties. In a batch process these definitions apply 
to one particular motion, and the motion deviations, 
caused by initial state and exogenous input 
disturbances, exhibit accumulation or irreversibility 
features. If admissible disturbances produce 
admissible motion deviations, the related motion is 
regarded stable in the so-called practical stability 
sense (La Salle and Lefschetz, 1961), and some 
outputs may exhibit growing or decreasing 
deviations, depending on the particular system. 
These notions of input-state and input-output 
stability-type are presented next in technical form 
(Alvarez et. al, 2004a). 
 
Definition 1. The batch motion   
x(t) = τ[t, to, xo, u (.)] 
 
of the nonlinear system 

x
.
 = f[x, u(t), t], x(t0) = 0,  z = h(x) 

 
is P (practically)-stable if, for given disturbance sizes 
εo, εu, εx > 0 and final time tf, the perturbed motions x̂
(t) = x(t) + x~ (t) are bounded as follows: 
 
|x~o| ≤ εo,   |u~(t)| ≤ εu, ⇒ 
|x~(t)| ≤ aeλ(t-to) |x~o| + a∫t

t

o
eλ(t-τ)[b|u~(τ)|]dτ ≤ εx 

 
The related output trajectory z(t) = h[x(t)] is P+ (or P-) 
stable if the perturbed outputs are bounded as 
follows, with γ ≥ 0 (or γ < 0): 
|z~(t)| ≤ αeγ(t-to)|x~o|+α∫t

t

o
eγ(t-to))[β|u~(τ)|]dτ ≤ εz   ♦ 

 
These definitions of state motion and output stability 
(Sontag, 2000) are necessary to address the key 
issues of output tracking with state stability and 
estimator convergence in batch processes. 
 
3.2  State-feedback control 
Assume that the optimal SF controller (5) does exist, 
enforce the initial (to), intermediate (ts) and terminal 
(tf) conditions (4) and restrictions (6). From passivity 
arguments it follows that the N-th tray composition 
must be the tracked output over the withdrawal 
period, this is: 

z(t) = c-N = E-1(c-p) := z-,  ts  ≤ t ≤ tf       (7) 
leading to the event SF and material balance-based 
passive tracking controllers: 
 
u = V,     to ≤ t ≤ ts = µs(cN, c-p)       (8a) 
u = µR(x, c-p),  ts  < t ≤ tf = µf(cD, cN-1, mp, J, c-p)  (8b) 
where 
µs(cN, c-p) = {t ∈ [0, tf]| cN(t) = E-1(c-p)} = ts 
µf(cD, cN-1, mp, J, c-p) = 

{t ∈ [ts, ∞) | fJ[J(t), µ[x(t)], mp(t), t] = 0}= tf 
u = µR(cD, cN-1, c-p):  
µR(cD,cN-1,c-p) = V[E(c-N)-E(cN-1)]/[(cD-c-N)] := µR(x, c-p) 
 
Comparing with the nonlinear controller forms 
 
µR(cD,cN-1,cp) = {V+[E(cN)-E(cN-1)]+ µc(cN,c-p)(a-bλm) 

}/[(cD-cN)+ µc(cN,c-p)] 
µc(cN, c-p) = (kc/λm)(cN - c-N) 
 
employed before (Barolo et. al, 1998; Alvarez et. al, 
2004a), in controller (8), the N-th tray composition is 
fixed, the SF term µc(cN) is not included because 
there is no measurement at the N-th tray. The 
corresponding (n-1)-dimensional zero-dynamics are 
given by 

x
.
 = f[x, µR(x, c-p)],      x(to) = xo,   t ∈ [to, tf] 

µs(x) = ts  < t ≤ tf = µf(x),  cN(ts) = c-N = Ε-1(c-p),   
x = [c0,..., cN-1, cD, cP, m0, mP, J]' 
 
and their unique solution motion is 
 
x(t) = τI(t, to, cF, m0, c-N)           (9) 
 
This motion is P+-stable as it represents the column 
behavior under ideal inventory control (Shinskey, 
1977): the output composition is maintained constant 
by balancing the energy and mass delivered to the 
system against the demand of the load. The stability 
of this motion in the presence of the fast unmodelled 
hydraulic dynamics follows from standard arguments 
in singular perturbation theory for dynamical systems 
(Khalil, 2002). The combination of the zero-
dynamics with its associated material balance SF 
controller yields the optimal FF controller 

x̂
.

 = f[x̂, µR(x̂,c-p)],  x̂(to) = x̂o,     t ∈ [to, tf]   (10) 

ts = µs(x̂),     tf = µf(x̂) 
u = µR(x̂, c-p) ,    cN(ts) = c-N = Ε-1(c-p),  ts  < t ≤ tf 
 
The closed-loop column motion P+-stability follows 
from the same property of the reduced column 
system (4) and the hydraulic dynamics fastness:  
 
Proposition 1. For any load composition cF ∈ CF the 
optimal column controlled motion (9), is passive, or 
equivalently, 
i) The system input-output pair (u, z = cN) has 
relative degree equal to one because of the 
fulfillment of the next conditions 
R < V+,  E’(c-P) > 1,  mP  > 0        (11) 



ii) The zero-dynamics motion xI(t) is P+-stable. 
iii) The application of the FF (10) and SF (8) passive 
material balance controllers to the column with 
hydraulic dynamics (3) yields a P+-stable closed-loop 
motion (9).                ♦ 
 
The behavior of the nonlinear SF material-balance 
controller (8) represents the behavior attainable with 
any observer-based passive OF controller, and such 
behavior will be considered the recovery target for 
the next OF control design. 

 
4. OUTPUT FEEDBACK CONTROL 

 
4.1  State estimation and sensor allocation 
By design specification, the preceding uR = R-to-z = 
cN passive controller must be implemented with a ι-
to-y passive state estimator, with ι representing the 
unknown input that is reconstructed to eliminate the 
output prediction mismatch (Alvarez and López, 
1999; Lopez and Alvarez, 2004). In the general 
multi-sensor case, the corresponding distillation 
column passive estimator is given by: 

ι̂
.
 = K(x̂ι)[y(t) - h(x̂)], ι̂(to) = 0, ι= (ι1,…, ιm)' (12) 

x̂
.

ι = fι[x̂ι, x̂ν, uR(t)] + G(x̂ι)[y - h(x̂ι)] + ι̂ , x̂ι(0) = x̂ιο
 

x̂
.

ν = fν[x̂ι, x̂ν, uR(t)], x̂ν(0) = x̂νο
, x̂ι = (ĉs1

,…, ĉsT
)' 

(x̂ι', x̂ν')' = Ipx̂,   (fι', fν')' = Ipf,  ω = min(ω1,...,ωm) 
G(x̂ι) = 2diag[ζ1ω1/β’(ĉs1

),..., ζmωm/β’(ĉsm
)] 

K(x̂ι) = diag[ω1
2/β’(ĉs1

),...,  ωm
2/β’(ĉsm

)], 
 
where xι (or xν) is the innovated (or non-innovated) 
state, in the sense that measurement innovation is (or 
is not) injected to its state dynamics, and  ι̂  
compensates the modeling error to eliminate the 
output mismatch, ωi (or ζi) is the characteristic 
frequency (or damping factor) of the almost (linear 
non-interactive pole assignable) i-th output error 
dynamics, Ip is a column-permuted identity matrix, 
and G and K are gain matrices.The functioning of the 
above estimator requires the adequate fulfilment of 
two conditions (Lopez et al, 2004): 
(i) The column motion x(t) must be partially 
observable with passive structure, this is, ∀ t ∈ [to, tf] 
rank G[xι(t)] = m ⇔ β’(ĉsi) ≠ 0, i = 1,…, nT  (13a) 
 
(ii) The non-innovated motion must be P+-stable: 
xν(t) = τI[t, to, xνo, xι(.)],  xι(t) = h-1[y(t)]   (13b) 
 
xν(t)  is the solution of Eq. (12b) with xι(t) = h-1[y(t)] 
and x̂ν(0) = xνο

, and its P+-stability follows from the 
P+-stability of the open or closed-loop column 
motion. The adequate fulfilment of these conditions 
(13) signify that the column motion is robustly 
detectable with passive structure, provided none of 
the sensors is at a tray with closed-to azeotropic or 
high-purity composition, implying the estimator 
functioning with a reasonable compromise between 
reconstruction rate and robustness. Typically, the 
estimator must be tuned from 3 to 10 times slower 
than the hydraulics. A nonlinear time-varying robust 
detectability-based criterion for choosing the 

measurement structure for estimation purposes 
(López et. al, 2004), in conjunction with previous 
measurement structure selection studies for staged 
processes (Romagnoli et. al, 1981), lead to the 
conclusions:  
 
(i) The measurement error propagation assessment 
should be started by looking at the following 
individual sensor (yi = ci) error propagation measure 
over location and time:  
κ(i, t) = |1/β’[ĉi(t)]| < ∞, i ∈ {0, 1,…, N}, t ∈ [0, tf] 
                       (14) 
(ii) A single sensor must be located in the reboiler, 
where the tray-to-tray temperature gradient is 
maximum, or equivalently, the error propagation 
measure κ(i, t) (14) is minimum, and this is in 
agreement with previous sensor location criteria for 
distillation column control purposes (Tolliver et. al, 
1980; Castellanos et. al, 2005a). As the temperature 
measurement is moved upwards, the error 
propagation grows, and this should happen rapidly in 
a high-purity column like the one that will be 
addressed in the application example section. 
 
(iii) In the multi-sensor case, the best set with m 
sensors consists of the union of the m best individual 
sensors and this is in agreement with previous reports 
(Alvarez et. al, 1981). 
 
(iv) Choose a candidate m-sensor location set, and 
ratify or rectify the result by estimator 
implementation and testing.  
 
4.2 Output-feedback control 
The combination of the SF controller (8) with the 
estimator (13) yields the OF controller (Figure 1): 

ι̂
.
 = K(x̂ι)[y(t) - h(x̂)],  ι̂(to) = 0       (15) 

x̂
.

ι = fι[x̂ι, x̂ν, uR(t)] + G(x̂ι)[y - h(x̂ι)] + ι̂ , x̂ι (0) = x̂ιο
 

x̂
.

ν = fν[x̂ι, x̂ν, uR(t)],   x̂ν(0) = x̂νο
 

u =µ(x, c-p): u = V, to ≤ t ≤ ts; u = µR(x, c-p), ts < t ≤ tf 

in IMC form. The rigorous verification of the related 
closed-loop stability conditions goes beyond the 
scope of the present work, and here it suffices to state 
the result in the next proposition, in the 
understanding that the proof follows from the 
application of the standard singular perturbation 
method (Alvarez et. al., 2004b) and the afore stated 
definitions of P+ and P- batch motion stability.  
 
Proposition 2. The OF controller (15) yields an 
optimal closed-loop batch column operation with 
with P+-stable state motion x(t) and P--stable product 
composition trajectory cp(t): 

cP(t) → c-P, |cP(tf) - c-P| ≤ εp; J(t) → J-(t), |J
.
(tf)| ≤ εJ (a-b) 

 
if the estimator (15) is tuned so that 
ω-

 ≤ ω = min(ωi, ωj) ≤ ω+(λm, λc),    ∂λmω+ > 0 
ω ≈ λm/nο, nο  ≈ 3 to 10             ♦ 
 
 
 
 



5. APPLICATION EXAMPLE 
 

Case example. Let us recall an ethanol-water batch 
distillation column studied before (Barolo et. al, 
1998, Alvarez et. al, 2004a). There are N = 8 trays, 
the initial load is mL = 8000 mol at composition cF = 
0.40, the vapor flow is V = 5400 mol/h, the tray 
hydraulic parameter set is (λm, a, b) = (1000 h-1, 
5400, 30), the condenser holdup is mD = 250 mol, 

and the nominal product composition is c-p = 0.84. 
The constants of the objective function (1) are: (Cp, 
CL) = (50, 5)$/mol, (Ch, Cc) = (1, 1) 2 x 10-6 $/kJ, CO 
= 3 $/h,  (λV, λR) = (3.96, 3) x 104 kJ/mol, td = 0.5 h. 
By nominal (or robust) operation we will understand 
the optimal closed-loop batch column operation with 
“central” (or perturbed) load concentration cF = 0.40 
(or cF ∈ CF deviated), actual (or erroneous) estimate 
ĉF, and noiseless (or noisy) measurements. In the 
noisy measurement case, Gaussian (zero-mean and 
0.1 K SD) random errors, will be added every 0.16 
min, and the estimator will be initialized with +10% 
load composition error. Following the tuning 
guidelines given in Section 4, the following estimator 
(15) gain parameters were chosen: ζ = 2.0, ωi = 
λm/(4N) (i.e., 4 times slower than the one of the 
hydraulics). 
 
Nominal operation. The application of the proposed 
design procedure (12) yields the optimal (exact FF or 
SF) operation (4a) shown in Figure 2, with (ts, tf) = 
(0.45, 3.7) h, which basically coincides with the ones 
drawn before via standard open-loop optimization 
techniques (Li et. al, 2001). 
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Fig. 2. Nominal optimal operation with cF = 0.4. 
 
Measurement structure. Following the measurement 
selection guidelines of Section 4, the error 
propagation dependency function κ(i, t) (14) (shown 
in Figure 3) was analyzed, finding that: (i) the best 
(or worst) location corresponds to the reboiler (or N-
th tray), (ii) above the 3rd-tray the error propagation 
measure is quite large, (iii) there should be at most 
two sensors in the bottom region, and the reboiler 
must be included.  
Robust operation. Figure 4 shows the column robust 
behavior in the presence of measurement noise, for 
two single-sensor locations and nominal load 

composition cF = 0.4: the reboiler (sn1
 = 0), and the 4-

th tray (sn1
 = 4). As expected, the reboiler sensor 

outperforms the 4-th tray one.  
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Fig. 3. Error propagation measure dependency κ(i, t) 

on location stage (i) and time (t). 
 
Sensor pairs in the bottom region were tried, 
including the reboiler. It was found that: (i) only the 
reboiler-first tray pair slightly improved the behavior 
of the reboiler sensor alone, and (ii) all the other 
pairs yielded worst behaviours. Thus, the reboiler 
sensor yielded the best compromise between 
simplicity, performance and robustness. These results 
differ from the ones drawn when the study is 
performed in the absence of hydraulic dynamics and 
measurement noise (Alvarez et. al., 2004a). Figure 5 
shows the robust column behavior, for various load 
concentrations (0.2, 0.3, 0.4, 0.5, 0.6) and using only 
the reboiler temperature measurement. As it can be 
seen in the figure, the on-line optimizing capability 
of the control scheme adjusts the switching time, the 
batch duration, and the reflux policy so that the 
utility function always ends up at its maximum value. 
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Fig. 4. Closed loop robust behavior with one 
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6. CONCLUSIONS 
 

The problem of designing an optimal robust OF 
controller for binary batch distillation columns has 
been addressed, by combining optimality, passivity 
and detectability notions and tools. The proposed 
methodology has: solvability conditions with 
physical meaning, a systematic control construction 
with a simple tuning scheme coupled to a closed-
loop stability criterion. From the control and 
estimator robustness-oriented passivity requirements, 
it followed that the N-th tray composition should be 
regulated on the basis of an estimator-based material 
balance driven by the reboiler temperature 
measurement. The approach is applied to an early 
studied (Barolo et. al, 1998, Alvarez et. al, 2004a) 
simulated example, finding that the proposed control 
scheme effectively handles the case of large load 
composition disturbances in conjunction with 
measurement noise and the presence of the hydraulic 
dynamics. It was verified that unmeasured output-
driven feedback does not improve the behavior of the 
observer-based material balance controller. The 
behavior limiting roles of the hydraulic dynamics 
and measurement noise were verified, signifying that 
the optimal motion and control design study should 
be performed and tested within a robustness 
framework. The extension of the proposed approach 
to the case of thermodynamic model uncertainties 
within a batch-to-batch operation framework is being 
pursued.  
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