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Abstract: Robust performance, the attainment of a specified response under
uncertainty, is a well studied problem in control engineering. In the field of systems
biology, related problems are emerging from the quantitative analysis of complex
biophysical networks. In this paper, connections are made between the robust
performance questions in biology and engineering. Two examples are used to
illustrate these ideas: (i) a signal transduction network, and (ii) the gene network
responsible for circadian oscillations. Copyright c©2005 IFAC
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1. INTRODUCTION

In biology, as in engineering, robust performance
refers to the attainment of a particular behavior
or response in the presence of uncertainty. This
appears to be a ubiquitous property of biolog-
ical processes that are subject to constant un-
certainty in the form of stochastic phenomena
(McAdams and Arkin, 1999), fluctuating environ-
ment, and genetic variation (for a recent review
on robustness in cellular functions, see (Stelling
et al., 2004b)). Biology has adapted a number of
approaches for coping with these sources of uncer-
tainty that include: redundancy, feedback control,
modularity, and hierarchies and protocols. The
robustness problems in systems biology have only
begun to yield in recent years to formal quanti-
tative analyses, owing largely to their nonlinear
(and nonstationary) nature. As with engineering
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systems, robust performance requires the precise
specification of both a performance metric, and
the type/size of uncertainty. When both of these
elements are specified, it may be possible to ana-
lyze biological systems with the engineering tools,
as will be shown in this paper. It is important to
note that the performance metric is often difficult
to define precisely in biology, as this is an implicit
element of an evolved entity.

2. ROBUST PERFORMANCE ANALYSIS OF
SIGNAL TRANSDUCTION

2.1 Biological Problem

In signal transduction, a receptor signal is “pro-
cessed” in a cascaded pathway to yield a cellu-
lar response. In the example considered in this
paper, the “processing” consists of a sequence of
kinase and phosphatase mediated reaction steps
consisting of phosphorylation and dephosphory-
lation steps, respectively. The key performance
attributes of such a signaling system are (Heinrich



et al., 2002): (i) speed at which signal arrives
to destination, (ii) duration of signal, and (iii)
strength of signal. As will be shown in this section,
translation of these criteria into formal control-
like specifications can be done, but only as an
approximation since the formulation is set up in
the frequency domain and these specifications are
in the time domain.

In order to formulate such a problem in the clas-
sical robust control analysis framework, a simple
model is utilized from the literature (Heinrich et
al., 2002). Under conditions of weak activation
(low degree of of phosphorylation), the individual
steps in the cascade obey linear dynamics:

dXi

dt
= αiXi−1 − βiXi (1)

where αi is a pseudo first order rate constant
for phosphorylation, βi is the rate constant for
dephosphorylation, and Xi is the phosphorylated
form of the kinase (i). For this study, we consider
the fourth order cascade detailed in the paper. In
that paper, it is assumed that the receptor inac-
tivation is approximated as a simple exponential
decay, with time constant λ. In that case, one can
combine the stage expressions (Equation 1) with
a simple expression for the initial receptor effect
to yield the overall cellular response (Y (s)) as the
step response of the following transfer function:

Y (s) =
(

s
1
λs + 1

)(
α4

(s + β)4

)
R(s) (2)

One simplifying assumption invoked above is that
the rate constants are equal for each stage of the
cascade.

In this special case (weakly activated pathways),
one can actually derive explicit expressions for the
various performance metrics that were specified
at the beginning of this section (see derivations in
(Heinrich et al., 2002)). For example, the signaling
time through the entire pathway is given by:

τ =
1
λ

+
n∑

j=1

1
βj

(3)

and the signal duration can be determined as:

θ =

√√√√√
⎛
⎝ 1

λ2
+

n∑
j=1

1
β2

j

⎞
⎠ (4)

It is noteworthy that each of these metrics are
independent of the kinase rate constants (αi).
Finally, the signal amplitude is given by:

S =
S0

∑n
k=1

αk

βk√(
1 + λ2

∑n
j=1

1
β2

j

) (5)

From Eqs. 3–5, one can easily derive analytical
expressions for signaling performance depending

on α and β, and use these to assess the results
from analysis in the frequency domain.
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Fig. 1. Performance of a weakly activated 4–stage
kinase cascade (αj = 1.0, βj = 0.6 (dashed
lines), λ = 10.0). Relative signal amplitude
Srel (gray level), and performance defined by
±5%. . . 50% Srel and θrel (solid lines).

For instance, in Figure 1 we assumed that a four–
stage cascade should simultaneously obey bounds
on the relative signal duration θrel and amplitude
Srel with respect to the nominal values for the
reference parameter set. With these performance
specifications, the system is most robust to per-
turbations along the diagonal in parameter space,
but most sensitive to orthogonal disturbances.
Notably, this is a structural feature of the system
(with a a nonlinear relationship between norm
of the parametric perturbation and performance
metric), which should be recovered by robustness
analysis.

2.2 Structured Singular Value

In control engineering, a standard tool for ro-
bustness analysis is the structured singular value
(SSV), which allows one to determine whether a
particular dynamical system, subject to a spec-
ified (structured) uncertainty, is able to remain
stable or to achieve a particular performance met-
ric (see, for example, (Skogestad and Postleth-
waite, 1996)). The two problems are known, re-
spectively, as robust stability and robust perfor-
mance, and there are standard software pack-
ages available to facilitate this computation (e.g.,
(Balas et al., 1995)). The key idea is to trans-
form the perturbed system into a new closed-loop
operator, and then to test the stability of that
operator. The basic idea is illustrated in Figure 2
where the M operator denotes a nominal process
system, and the ∆ operator denotes the uncer-
tainty in the system. Stability of the depicted
system is equivalent to robust stability of the
original problem, and if one closes a feedback loop
between suitably transformed input and output
signals, one obtains an operator whose stability



characteristics coincide with the attainment of
robust performance in the original problem.
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Fig. 2. Standard M-∆ Diagram for Robustness
Analysis

The condition for internal stability of the M-∆
structure in Figure 2 is

sup
ω

µ∆(M(jω)) ≤ 1 (6)

where µ∆(M) is the structured singular value.
Tight bounds on µ∆(M) can be obtained using
appropriate D-scaling matrices in the relation

µ∆(M) ≤ inf
D

σ̄(DMD−1) (7)

where σ̄ denotes the maximum singular value. The
upper bound on µ∆(M) in Eq. 7 can be reformu-
lated as a convex optimization problem to find
the global minimum. MATLAB’s µ-Analysis and
Synthesis Toolbox (Balas et al., 1995) provides
the utilities required to execute this computation.
Note, however, that extensions for time-varying
and nonlinear uncertainty (Doyle III et al., 1989)
are necessary before employing the SSV analysis
on nonlinear systems.

2.3 Analysis of Protein Kinase Cascade

The preceding structured singular value (SSV)
analysis was applied to the kinase cascade prob-
lem. A multiplicative uncertainty was introduced
for both the α and β parameters, and the impact
on a performance metric was evaluated. The un-
certainty was characterized as follows:

α = α̃ · (1 + rα∆α) (8)

β = β̃ · (1 + rβ∆β) (9)

where r denotes the relative uncertainty in the
coefficient, ∆ denotes a scaled (||∆|| ≤ 1) uncer-
tainty operator, and the tilde denotes a nominal
value for the coefficient. The structured paramet-
ric uncertainty is the specific type of uncertainty
considered in this case.

Algebraic manipulations yield the following repre-
sentation for the uncertain transfer function from
receptor to cell function:

Y

R
=

(
s

1
λs + 1

)(
α4

(s + β)4

)

=
(

s
1
λs + 1

)(
α̃4

(s + β̃)4

)
· (1 + rα∆α)4

1 + rβ β̃

s+β̃
∆β

(10)

These manipulations were carried out for the
fourth order cascade of kinase operations. Using
loop algebra, this expression can be used to for-
mulate the corresponding M-∆ block diagram.

In order to specify a performance metric, a nom-
inal response of the operator was selected, and a
performance weight was designed to yield a small
margin between an actual (uncertain) response
and the desired response. It should be noted that
some conservatism is inevitable here, as one is
translating time domain performance criteria into
the frequency domain. A tracking error was intro-
duced (difference between actual cellular response
and the nominal response) and this was weighted
by the filter:

We(s) =
(s + b)2

c(s + a)
(11)

where a, b, and c are adjustable coefficients. In
this work, they were selected as (0.001, 0.2, 0.3).

Structured singular analysis was carried out for
several of the examples in the original reference
(Heinrich et al., 2002). In the first case, the pa-
rameter set was selected to be (β = 0.6, α =
1.0, λ = 10). The corresponding weighted per-
formance transfer function and time domain re-
sponses are depicted in Figure 3A for a choice of
relative error (both in α and β) of 4.8%. Struc-
tured singular value computations confirm that
the system is robustly stable for perturbations up
to magnitude r = 0.048. Consistent with the ana-
lytic results in the time domain, the perturbations
with opposite signs (α versus β) yield the largest
deviation in both signal duration and amplitude.

A second set of parameters was investigated (β =
1.1, α = 1.0, λ = 1.0), and it was found that
the original 4.8% perturbation has a very small
impact on the system performance. This is con-
firmed with formal structured singular value com-
putation, which yields a maximum perturbation
magnitude of 0.162, indicating that nearly four
times the magnitude of perturbation is accept-
able for this nominal parameter set (confirmed
in Figure 3B). Once again, the direction of the
perturbation is important, and the results are
consistent with the previous case.
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Fig. 3. Performance Summary for kinase cascade
with parameter sets α = 1.0, β = 0.6,
λ = 10.0 (A) / λ = 1.0 (B), and 4.8%
(A) / 16.2% (B) multiplicative parameter
uncertainty. Nominal performance bound and
4 permutations of maximal uncertain values
with corresponding transfer function magni-
tude in frequency domain (top plots) and
time domain response to unit step input (bot-
tom plots).

3. ROBUST PERFORMANCE ANALYSIS OF
CIRCADIAN RHYTHM

3.1 Biological Problem

Genetic oscillators, in particular those generat-
ing 24–hour (circadian) rhythms, have emerged
as model systems for studying the robustness
of cellular dynamics. In reality, the evolutionary
conserved period generator displays a complex
architecture with several negative and positive
feedback loops controlling gene expression. This
complexity most likely results from the need for
robust performance (Stelling et al., 2004a). Per-
formance metrics for this system, however, are not
easily derived because it is largely unclear, which
features of the autonomous oscillator (in constant
darkness), or of its synchronization with external
rhythms by light (entrainment) are most crucial
for the physiological function of the system.

Here, we started analyzing performance metrics
and robustness of the entrained system by using a
simple ODE model for the circadian oscillator in
the fruit fly Drosophila (Tyson et al., 1999). The
reduced (via steady–state approximation) 2–state
model is given by

dM

dt
=

vm

1 + (Pt(1 − q)/2Pcrit))2
− kmM (12)

dPt

dt
= vP M − kp1Ptq + kp2Pt

Jp + Pt
− kp3Pt (13)

with q =
2

1 +
√

1 + 8KeqPt

, (14)

and M and Pt being the total mRNA and protein
concentrations of a single regulator, respectively.
Altogether, nine parameters describe kinetic prop-
erties of the biochemical reactions considered in
the model. A unit square–wave forcing signal u(t)
with period τF was used for the entrainment. By
replacing the equilibrium constant in Eq. 14 with

K ′
eq(t) = [1 − α u(t)]Keq , (15)

α was an adjustable parameter for the strength
of the entraining signal (Tyson et al., 1999). So-
lutions for the ODE system were obtained by nu-
merical integration with MATLAB’s ode15s solver
(The Mathworks Inc., Natick, MA).

3.2 Performance metrics for entrainment

Performance metrics for biological systems have
to be derived from – usually incompletely char-
acterized – physiological functions the underlying
control ciruits were presumably optimized for. For
the circadian oscillator, biologically plausible per-
formance criteria could include
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Fig. 5. Systematic assessment of performance criteria for entrainment. (A) Normalized deviation of
the average oscillator period, i.e. |1 − τ |, (B) Standard deviation of the normalized period, στ , (C)
Persistent phase difference (φF = +τF /2), ϕ, and (D) Average time-constant for re–synchronization,
t1/2. White lines demarcate the region of perfect entrainment as defined in the text.
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Fig. 4. Entrained oscillations in M(t) for τF = 22h
and varying α. Perfect (black) and imperfect
(gray) entrainment by light input (dashed).

(1) robust perfect entrainment to light inputs of
constant period and amplitude, and

(2) rapid adaptation to phase shifts in the input
to minimize phenomena such as ”jet–lag”.

To analyze the circadian oscillator according to
these criteria, period (τF ) and coupling strength
(α) of the forcing signal were varied systemat-
ically, and the resulting stable oscillations were
recorded. Figure 4 shows representative trajecto-
ries of the mRNA concentration M(t) for fixed τF

and different values of α, illustrating the complex
dynamics of the forced system. For instance, per-
fect entrainment, i.e. regular oscillations with pe-
riod τF , was obtained only for maximal (α = 1.0)
and some intermediary (α = 0.55) coupling val-

ues. Slightly different parameters induced period
doubling (α = 0.95) and irregular oscillations with
an average period of τF (α = 0.5), respectively.

Assessing the precision of entrainment, hence,
required at least two performance specifications
regarding the average period length, τ , and its
variability (standard deviation) στ . In brief, the
period of the entrained system τ(t) was derived by
detection of maxima in M(t) to calculate τ and στ

from a normalized τ ′(t) = τ(t)/τF . Both measures
were then analyzed in the τF ×α plane to charac-
terize the oscillator’s performance with respect to
a constant entraining signal (Figure 5A,B). We
considered the circadian clock as perfectly en-
trained whenever |1− τ | ≤ 0.01 and στ ≤ 0.01. In
general, as would be expected, closer coupling of
the oscillator with the input signal, and an input
period near the free–running period of the circa-
dian system (24.2h) favor entrainment. The data
in Figure 5B, however, indicates that, in contrast
to a previous analysis (Tyson et al., 1999), the
simplified model has only a small region of perfect
entrainment because irregular oscillations arise at
average values of α. This underlines the need for
exact specification of performance criteria, and
supports the view that the oscillator’s additional
complexity may provide robust performance un-
der input uncertainties (Stelling et al., 2004a).

Speed and accuracy of tracking phase shifts in
the forcing signal that occur, for instance, when
traveling across time–zones, constitutes a second
possible performance criterion for the circadian



clock. Phase shifts φF in u(t) with −τF /2 ≤ φF ≤
+τF /2 were therefore applied to the (partially) en-
trained system, and the transient dynamics were
analyzed. Typically, for perfectly entrained condi-
tions as defined above, the system rapidly adapted
to the new phase; only minor dependencies on φF

were observed (Figure 6).
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Fig. 6. Re–synchronization of the circadian os-
cillator after a φF = +τF /2 phase shift in
the input with τF = 25 h, α = 0.2 . . . 0.4
(light gray to black). Phase differences be-
tween maxima of M(t) (symbols) normalized
by φF , and approximations (Eq. 16, lines).

To quantitatively characterize re–synchronization
of the clock, we established an approximation for
the time–course of the phase difference φτF ,α(t),
exploiting the similarity to first–order decay pro-
cesses when the phase shift occurs at t = 0:

φτF ,α(t) ≈ φ−1
F k3(exp(−k1 · t/τF ) + k2) . (16)

Here, k1 describes the time–constant of decay-
ing phase differences, which can be employed to
calculate a ’half-life’ of the differences as t1/2 =
ln(2)/k1. The persistent phase difference for t →
∞, accordingly, is given by ϕ = φ−1

F · k2 · k3.
Systematic analysis for these two measures, how-
ever, revealed only weak dependencies on coupling
strength α and forcing period τF (Figure 5C,D).
In future studies, hence, the precision of entrain-
ment as a prerequisite for adaptation should move
into the focus of the analysis.

4. SUMMARY

In this paper, we have drawn connections between
classical engineering approaches to robust per-
formance analysis, and the corresponding prob-
lems in systems biology. Although there are some
restrictions on the class of systems that are
amenable to this type of analysis, the tools al-
low straightforward application to problems with
hundreds of states, and a comparable number of
sources of structured uncertainty (e.g., parametric
uncertainty). By comparison, there are recently
reported specialized mathematical results that are

potentially less conservative, but are restricted to
narrow classes of problems (Chaves et al., 2004).

There is a clear tradeoff between performance
levels and the magnitude and type of uncertainty,
as was illustrated in the examples in this paper.
Furthermore, as was shown in the signal transduc-
tion example, the nonlinear behavior at different
operating points (parameter sets) yields different
results for robust performance. The precise trade-
offs can be computed in the form of a performance
curve using skewed µ (Skogestad and Postleth-
waite, 1996). Such tradeoff curves would be rather
valuable in the analysis of complex biological sys-
tems.

A more subtle point is worth emphasizing on the
tradeoffs between performance and uncertainty in
biological systems. In some cases, uncertainty may
be characterizable, based on stochastic variations
that are modeled, or environmental perturbations
that are predictable. In other cases, the precise
form of the structured uncertainty may be diffi-
cult to characterize. In general, the performance
objectives employed by nature – whether on a
real-time basis or on an evolutionary timescale –
remain an elusive goal for scientists to determine
by reverse–engineering. The performance metric
may be high–dimensional, and also depend upon
the boundaries drawn for analysis: for example,
the goal of a single circadian gene network in a
neuron is not likely to be the same as the goal
of a population of 10,000 synchronized neurons in
the brain.
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