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Abstract: The paper deals with a filter design for nonlinear continuous stochastic
systems with discrete-time measurements. The general recursive solution is given
by the Fokker-Planck equation (FPE) and by the Bayesian rule. The stress is laid
on computation of the predictive conditional probability density function from
FPE. A new usable numerical scheme is designed. In the scheme, the separation
technique based on an upwind volume method and a finite difference method for
hyperbolic and parabolic part FPE is used. The approach is illustrated in some
numerical examples. Copyright c©2005 IFAC
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1. INTRODUCTION

The problem of state estimation for nonlinear
continuous stochastic systems with discrete-time
measurements is of special interest with respect
to real continuous processes and the digital de-
vices used to processing measurements. A general
solution is completely described by conditional
probability density functions (pdf’s) of state and
it is given by direct manipulation of the Fokker-
Planck equation (FPE) and the Bayesian rule
(BR). The FPE (Risken, 1984) is a partial dif-
ferential equation (PDE) that governs the evolu-
tion of the predictive pdf between the measure-
ment time instants, the BR represents a correction
of the previous predictive pdf at the measurement
times. A closed-form solution of the state esti-
mation problem is known only for linear Gaus-
sian systems (Kalman and Bucy, 1961; Jazwin-
ski, 1970) and a few special cases, e.g. exact finite
dimensional filters based on the exponential pdf
family (Daum, 1988), exact infinite-dimensional

filters (Kouritzin, 1998) and the Gaussian sum
filters (Šimandl and Švácha, 2002).

In other cases it is necessary to employ analyt-
ical or numerical approximations of the system
or pdf’s, e.g. system approximation (Jazwinski,
1970; Schmidt, 1993), moment approximation
method of the conditional distribution (Kushner
and Budhiraja, 2000), decomposing the nonlin-
ear filter into time-consuming off-line and compu-
tationally efficient on-line components (Lototsky
and Rozovskii, 1998), using the sequential Monte
Carlo methods (del Moral and Jacod, 2001).
These approximations work well in many applica-
tions but can be unsatisfactory or even unusable
with respect to their features. Therefore other
approaches to the solution of the state estimation
problem are still quested and developed.

The solution of the FPE can be seen as a cor-
nerstone for whole recursive computation. Exten-
sive numerical simulations of the FPE have been



performed using finite element methods (FEM’s)
(Mirkovic, 1996) or using of the Monte Carlo
simulation (Spencer and Bergman, 1993). Fur-
ther the finite difference methods (FDM’s) (Press
et al., 1986) belong to standard numerical ap-
proaches to the solution of PDE’s and thus can be
also applied to approximation of the FPE. Never-
theless most of these approaches are focused on
specific physical processes and don’t correspond
to direct manipulation in estimation algorithm.

The goal of the paper is to present a new usable
and alternative numerical solution of the FPE
in state estimation problem based on separation
of the FPE into two parts. The aim is to solve
the first hyperbolic part by upwind finite volume
methods (FVM’s) (LeVeque, 2002) and the second
parabolic part by the standard FDM’s (Press et

al., 1986). It is supposed that separation of the
FPE and choice of a suitable numerical method for
each part should achieve better estimation quality
comparing to application of a single numerical
method to unseparated FPE.

The paper is organized as follows: The problem
formulation and general solution of the considered
estimation problem is presented in Section 2.
Section 3 is focused on the new numerical solution
of the FPE. The results of the paper are illustrated
in some numerical examples in Section 4.

2. PROBLEM STATEMENT

Consider the problem of state estimation where
the state x(t) evolves in continuous time according
to the Itô stochastic differential equation (SDE)

dx(t) = f(x(t), t)dt +G(t)dw(t) (1)

and the measurement zk is given as

zk = h(xk, tk) + vk (2)

where t is time, tk are time instants for k =
0, 1, 2, . . ., x(t) is state vector with dimx(t) = n
(it is used short notation xk = x(tk)), zk rep-
resents measurement vector at time tk with
dim zk = m, f(x(t), t) and h(xk, tk) are known
vector functions, and G(t) is known n×n matrix.
The process noise, w(t), is a Rn-valued Brown-
ian motion with E(dw, dwT ) = Idt. The mea-
surement noise vk is white and Gaussian with
dim(vk) = m, E(vk) = 0 and cov(vk) = Rk

thus p(vk) = N (vk : 0,Rk). The noises w(t),
vk and the random variable x(t0) are mutually
independent.

The aim is to determine the conditional filtering
pdf p(xk|zk) and predictive pdf p(x(t)|zk) for t ∈
Ik,k+1 , (tk, tk+1〉 (i.e. for the measurement times

tk < t ≤ tk+1), where z
k , [z0, z1, z2, . . . , zk]

T .

The general recursive solution of the filtering
problem can be given by the Bayesian approach.

The filtering pdf p(xk|zk) at the measurement
times represents a correction (update) of the pre-
vious predictive pdf p(xk|z

k−1) and has the fol-
lowing form

p(xk|z
k) =

p(xk|z
k−1)p(zk|xk)

∫

p(xk|zk−1)p(zk|xk)dxk
(3)

where p(x0|z
−1) is the prior pdf of the initial

state x0.

The predictive pdf p(x(t)|zk) for t ∈ Ik,k+1 is
given by the FPE

∂p(x(t)|zk)

∂t
=−

∂p(x(t)|zk)

∂x(t)
f(x(t), t) (4)

− p(x(t)|zk) tr

(

∂f(x(t), t)

∂x(t)

)

+
1

2
tr

(

Q(t)
∂2p(x(t)|zk)

∂x2(t)

)

with the initial condition p(xk|z
k), where ∂p(x(t)|zk)

∂x(t)

is the gradient of p(x(t)|zk) with respect to x(t),
∂f(x(t),t)

∂x(t) is the Jacobian of f(x(t), t) with respect

to x(t), tr denotes ”trace”, ∂2p(x(t)|zk)
∂x2(t) is the Ja-

cobian of the transpose of the gradient ∂p(x(t)|zk)
∂x(t)

and Q(t) = G(t)G(t)T .

The key idea of most numerical approaches for
generation of conditional pdf’s of the state is
to substitute a nonnegligible continuous support
of the pdf by a grid of cells. Values of the pdf
are computed at these grid cells only and thus
the solution of (3), (4) is performed numerically
over the grid instead of the continuous support.
The nonnegligible support is a region in the state
space where actual state is probable to lie and
hence values of the pdf are nonnegligible there.

The basic numerical scheme can be summarized
in the following recursive algorithm:

Initialization: Define an initial grid in Rn for
the prior pdf p(x0|z−1):

P ′
0[i1, . . . , in] = p̂x0|z−1

(

x[i1, . . . , in]|z
−1

)

(5)

where P ′
0[i1, . . . , in] represents approximate value

of pdf at x[i1, · · · , i2]. The grid is rectangular with
N1 × N2 . . . × Nn cells, ∆x1, . . . ,∆xn are sizes
of the cells. The grid is parallel with coordinate
axes.

Step 1: At time tk compute values of the approx-
imate filtering pdf p̂(xk|zk) at grid cells using

Pk[i1, . . . , in] = p̂xk|zk

(

x[i1, . . . , in]|z
k
)

= (6)

= c′−1
k P ′

k[i1, . . . , in]pvk
(zk − hk(x[i1, . . . , in]))



where

c′k =

N1
∑

i1=1

· · ·
Nn
∑

in=1

∆ xP ′
k[i1, . . . , in] · (7)

· pvk
(zk − hk(x[i1, . . . , in]))

and ∆x = ∆x1∆x2 . . .∆xn.

Consider tj = tk.

Step 2: Define a new suitable grid in Rn simi-
larly to initialization step for the predictive pdf
p(x(t)|zk for tj ∈ Ik,k+1, where j = 0, . . . ,M (i.e.
at the time instants tk, tk +∆t, tk +2∆t, . . . , tk +
(M − 1)∆t, tk+1), ∆t is time step

P ′
j [i1, . . . , in] = p̂xj |zk

(

x[i1, . . . , in]|z
k
)

. (8)

Step 3: Compute values P ′
j [i1, . . . , in] of the

approximate predictive pdf p(x(t)|zk for tj ∈
Ik,k+1 using a suitable numerical method for
the FPE (4).

Let k ←− k + 1 and continue with Step 1.

The given algorithm provides only basic frame.
The solution of the FPE (Step 2 and Step 3) is
the cornerstone for whole recursive computation.
The next section is focused on these two steps
of the recursive estimation algorithm within new
usable solution of the FPE.

3. NEW NUMERICAL SOLUTION OF THE
FOKKER-PLANCK EQUATION

The basic idea of the numerical solution of
the FPE (4) is to see the FPE as a composition
of a parabolic and a hyperbolic part, to consider
them separately and subsequently to choose an ef-
ficient method for solution of each part. The first
hyperbolic part

∂p(x(t)|zk)

∂t
= −

∂p(x(t)|zk)

∂x(t)
f(x(t), t) (9)

is solved by upwind FVM’s (LeVeque, 2002). Up-
wind schemes based on FVM’s represent powerful
class of numerical methods for hyperbolic PDE’s.
The second parabolic part

∂p(x(t)|zk)

∂t
=− p(x(t)|zk) tr

(

∂f(x(t), t)

∂x(t)

)

+
1

2
tr

(

Q(t)
∂2p(x(t)|zk)

∂x2(t)

)

(10)

takes results from (9) and is solved by implicit
scheme FDM’s (Press et al., 1986).

Now the Steps 2 and 3 from the basic algorithm
considered in Session 2 will be designed.

3.1 Separation approach for one-dimensional system

Step 2: Consider dividing the nonnegligeble sup-
port of the filtering pdf p(xk|z

k) into N intervals
(grid cells) x[i], ∆x = x[i + 1/2] − x[i − 1/2],
i = 1, . . . , N . The value Pk[i] approximates the av-
erage of the pdf p(xk|z

k) over i-th interval at time
tk and also represents approximate value of the
pdf at x[i] :

Pk[i] = p̂xk|zk

(

x[i]|zk
)

= (11)

=
1

∆x

∫ x[i+1/2]

x[i−1/2]

p(xk|z
k)dxk

Step 3: The values Pk[i] (11) are the initial
condition for numerical solution of the FPE (4)
for tj ∈ Ik,k+1, where j = 0, . . . ,M .

An explicit algorithm for the hyperbolic part FPE
(9) can be developed (LeVeque, 2002):

P ′
j+1[i]

∗ = P ′
j [i]−

∆t

∆x
(Fj [i + 1/2]− Fj [i− 1/2])

(12)
where flux Fj [i + 1/2] is an approximation of

f(x[i], t)p(x[i + 1/2], t|zk)

over time step ∆t:

Fj [i + 1/2] ≈ (13)

≈ f (x[i], t)
1

∆t

∫ tj+1

tj

p
(

x[i + 1/2], t|zk
)

dt.

The values P ′
j+1[i]

∗ are modified at each time
step tj by (12) through the endpoints of the
intervals. The specific variant of FVM depends on
how are chosen Fj [i + 1/2] and Fj [i− 1/2] , e.g.:

Fj [i + 1/2] = (14)

=
1

2
[f (xj [i], tj)

(

P ′
j [i + 1] + P ′

j [i]
)

−|f (xj [i], tj) |
(

P ′
j [i + 1]− P ′

j [i]
)

],

Fj [i− 1/2] = (15)

=
1

2
[f (xj [i], tj)

(

P ′
j [i] + P ′

j [i− 1]
)

−|f (xj [i], tj) |
(

P ′
j [i]− P ′

j [i− 1]
)

]

Then the scheme (12)-(15) is an upwind FVM
with first-order accuracy. In order for the explicit
scheme to be stable, the condition

|f(xj [i], tj)
∆t

∆x
| ≤ 1 (16)

has to be satisfied for i = 1, . . . , N and tj ∈ Ik,k+1.
A more usable approximation of (15) can be found
in LeVeque (2002).



Figures 1, 2 illustrate time and state discretisation
(grid cells) for numerical solution of the FPE
based on MFV’s.

Fig. 1. Grid cells for numerical solution of the
FPE.

Fig. 2. Upwind finite volume method - updating
the cell average by fluxes at the cell edges.

Finally, the classical FDM can be used for
parabolic part (10) of the FPE. The discrete im-
plicit scheme represents matrix equation of N -th
order and is unconditionally stable

P ′
j+1[i]− P ′

j+1[i]
∗

∆t
= (17)

−
∂f (x(t), t)

∂x(t)

∣

∣

∣

∣

x=x(t);t=tj+1

P ′
j+1[i]

+
1

2
Q(tj+1)

P ′
j+1[i + 1]− 2P ′

j+1[i] + P ′
j+1[i− 1]

∆x2
.

3.2 Separation approach for n-dimensional system

Given scheme for the 1-dimensional system can be
extended to higher dimension:

Step 2: Consider dividing the nonnegligeble sup-
port of the filtering pdf p(xk|z

k) into N1×N2 . . .×
Nn grid cells x[i1, . . . , in]. The value Pk[i1, . . . , in]
approximates the average of the pdf p(xk|z

k) over
[i1, . . . , in] cell at time tk and also represents ap-
proximate value of the pdf at x[i1, . . . , in] :

Pk[i1, . . . , in] = p̂xk|zk

(

x[i1, . . . , in]|z
k
)

= (18)

=
1

∆x

∫ x[i1+1/2,i2,...,in]

x[i1−1/2,i2,...,in]

· · ·

· · ·

∫ x[i1,i2,...,in+1/2]

x[i1,i2,...,in−1/2]

p(xk|z
k)dxk

Step 3: The values Pk[i1, . . . , in] (18) are the ini-
tial condition for numerical solution of the FPE (4)
for tj ∈ Ik,k+1.

Figure 3 illustrates time discretisation and state
discretisation (grid cells) for numerical solution
of FPE (n = 2).

Fig. 3. Grid cells (n = 2) for numerical solution of
the FPE.

An explicit algorithm for the hyperbolic part FPE
(9) can be developed (LeVeque, 2002):

P ′
j+1[i1, . . . , in]

∗ = P ′
j [i1, . . . , in]− (19)

−
n
∑

l=1

∆t

∆xl
(F l

j [i1, . . . , il + 1/2, . . . , in]−

−F l
j [i1, . . . , il − 1/2, . . . , in])

where

F l
j [i1, . . . , il + 1/2, . . . , in] ≈ (20)

≈ fl (x[i1, . . . , il, . . . , in], t) ·

·
1

∆t

∫ tj+1

tj

p
(

x[i1, . . . , il + 1/2, . . . , in], t|z
k
)

dt

is an approximation.

Thus the values P ′
j+1[i1, . . . , in]

∗ are modified at
each time step tj by (19). For example simple
numerical approximations of F l

j are

F l
j [i1, . . . , il + 1/2, . . . , in] = (21)

=
1

2
[f1 (xj [i1, . . . , il, . . . , in], tj) ·

·
(

P ′
j [i1, . . . , il + 1, . . . , in] + P ′

j [i1, . . . , in]
)

−|fl (xj [i1, . . . , il, . . . , in], tj) | ·

·
(

P ′
j [i1, . . . , il + 1, . . . , in]− P ′

j [i1, . . . , in]
)

]



F l
j [i1, . . . , il − 1/2, . . . , in] = (22)

=
1

2
[f1 (xj [i1, . . . , il, . . . , in], tj) ·

·
(

P ′
j [i1, . . . , in] + P ′

j [i1, . . . , il − 1, . . . , in]
)

−|fl (xj [i1, . . . , il, . . . , in], tj) | ·

·
(

P ′
j [i1, . . . , in]− P ′

j [i1, . . . , il − 1, . . . , in]
)

].

The scheme (19)-(22) is an upwind FVM with
first-order accuracy. In order for the explicit
scheme to be stable, the condition

n
∑

l=1

|fl(xj [i1, . . . , in], tj)|
∆t

∆xl
≤ 1 (23)

has to be satisfied for i1 = 1, . . . , N1, i2 =
1, . . . , N2 ... in = 1, . . . , Nn and tj ∈ Ik,k+1.

The classical FDM is used for parabolic part (10)
of the FPE. The discrete implicit scheme repre-
sents matrix equation of N -th (where N = N1 ·
N2 · · ·Nn) order and is unconditionally stable

P ′
j+1[i1, . . . , in]− P ′

j+1[i1, . . . , in]
∗

∆t
= (24)

−
n
∑

l=1

∂fl (x(t), t)

∂xl(t)

∣

∣

∣

∣

x=x(t);t=tj+1

P ′
j+1[i1, . . . , in]

+
1

2

n
∑

l=1

Ql,l(tj+1) ·
P ′

j+1[i1, . . . , il + 1, . . . , in]− ..

∆x2
l

..− 2P ′
j+1[i1, . . . , in] + P ′

j+1[i1, . . . , il − 1, . . . , in]
.

From (19) and (24) it is noticeable that compu-
tational complexity of the algorithm grows expo-
nentially with increasing state dimension for given
accuracy. Also suitable design of grid cells and
condition of stability (23) are crucial for stable
and time optimal computation at all time instants
tj ∈ Ik,k+1. Basic idea for efficient design of grid
cells can be considered similarly as in the point-
mass approach (Šimandl et al., 2002) and then
substantial reduction of numerical demand can be
achieved.

4. NUMERICAL ILLUSTRATION

To show different performance of the FDM (Press
et al., 1986) and new separation approach (SA)
the linear non-gaussian system is considered

dx(t) = 0.1x(t)dt + dw(t)

zk = 2xk + vk

with tk (t0 = 0s, t1 = 0.1s, t2 = 0.2s, . . .), the prior
pdf p(x0|z−1) = N (x0 : −2, 1) and p(vk) =
0.5N (vk : 0.5, 0.1) + 0.5N (vk : 2, 0.2). The new

SA and the classical implicit FDM filter with grid
parameters (∆x = 0.1, x ∈ 〈−10, 10〉, N = 200)
and ∆t = 0.01 are designed. The aim is to com-
pare quality of these filters with the exact filtering
pdf produced by the Gaussian sum filter (Šimandl
and Švácha, 2002).

Comparison of time evolution of

J(t) =

∫

(p̂(x(t)|zk)− p(x(t)|zk))2dx

for the FDM and the SA is in Figure 4. It can be
seen that estimate quality of the SA is better than
that of the FDM.

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8
x 10

−4

t [sec]

J(t)

Fig. 4. Time evolution of J(t) for the FDM (solid)
and the SA (dashed), Jk (circle), J ′

k (×
mark).

4.1 Example 2

To show the extension of the SA to higher di-
mension, the following continuous stochastic pro-
cess x(t) observed at discrete time instants tk

(t0 = 0s, t1 = 0.2s, t2 = 0.4s, . . .)

dx1(t) = (−0.05x1(t) + x2(t))dt + dw1(t)

dx2(t) = (0.7x1(t)− 0.4x2(t))dt + dw2(t)

z1(tk) = x1(tk) + x2(tk) + v1(tk)

z2(tk) = x2(tk) + v2(tk)

with the pdf’s

p(x0|z
−1) = 0.5N

(

x0 :

[

0
0

]

,

[

0.1 0
0 0.1

])

+ 0.5N

(

x0 :

[

1
1

]

,

[

0.1 0
0 0.1

])

,

p(vk) = 0.5N

(

x0 :

[

0
0

]

,

[

0.1 0
0 0.1

])

+ 0.5N

(

x0 :

[

−1
1

]

,

[

0.1 0
0 0.1

])

is considered. The new SA filter with grid param-
eters (∆x1 = 0.2,∆x2 = 0.2, x1 ∈ 〈−2, 5〉, x2 ∈
〈−2, 5〉, N1 = 35, N2 = 35) and ∆t = 0.005 is de-
signed. The development of the state estimate x̂(t)
and the filtering pdf p̂(xk|zk) generated by the SA
filter are shown in Figures 5 and 6, respectively.
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Fig. 5. Development of the state x(t) (solid) and
its point estimates x̂k (circle), x̂′k (× mark),
x̂′(t) (dashed) for t ∈ Ik,k+1.
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Fig. 6. Development of the filtering pdf p̂(xk|z
k)

for k = 0, 1 and x(tk) (circle).

5. CONCLUSION

A new separation approach for numerical solution
of the FPE was designed. The approach is based
on separation of the FPE into hyperbolic and
parabolic parts and application of efficient nu-
merical methods to each of them. The hyperbolic
part is solved by an explicit FVM and the results
are used in an implicit FDM for the parabolic
part. The scheme has simple implementation and
the extension to higher dimension is straightfor-
ward. Comparing to classical implicit FDM the
approach can produce results with higher estima-
tion quality.
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