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Abstract: The expanding integration of control and communication networks in recent
years has generated an increasing interest in control problems with feedback over a
communication channel. Significant research activity has concentrated on stabilisation
in face of channel effects such as quantisation and data-rate limits. In a recent paper, the
authors have studied the problem of feedback stabilisation over a communication channel
with a constraint on the admissible signal-to-noise ratio (SNR). It has been shown therein
that for a delay-free, linear time-invariant feedback loop, a SNR constraint in the feedback
channel imposes fundamental limitations in the ability to achieve closed-loop stability.
The present paper extends these results by introducing a time-delay in the loop, and shows
that the lowest SNR required for closed-loop stability increases by a factor that may grow
exponentially with the time-delay and the unstable open loop poles of the system. This
result contributes to the quantification of performance tradeoffs in integrated control and
communication environments. Copyright c©2005 IFAC.
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1. INTRODUCTION

This paper considers the problem of feedback stabil-
isation over an idealised continuous-time communi-
cation channel with a constraint on the input signal-
to-noise ratio (SNR). The setting is illustrated in Fig-
ure 1, in which G(s) and K(s) are respectively plant
and controller, with G(s) minimum phase but possibly
unstable. The feedback channel is represented by the
linear input-output relation

ur(t) = us(t) + n(t), (1)

where n(t) is a continuous-time, zero-mean additive
white Gaussian noise (AWGN) with intensity Φ,
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E{n} = 0, E{n′(t)n(τ)} = Φ δ(t − τ), ∀t, τ ∈ R,

where n′ represents the transpose of n, E{·} is the
expectation operator and δ(t) is the unit impulse. The
channel is assumed to have a constraint on its SNR,
i.e.,

‖us‖
2
RMS

Φ
=

E{u′s(t)u(t)}

Φ
<
P

Φ
(2)

for some predetermined value P < 0.

This idealised model of a communication channel is
common in Communications and is usually called the
AWGN channel (e.g., Cover and Thomas, 1991).

A setting such as that of Figure 1 has been considered
in a recent work by the authors (Braslavsky et al.,
2004), in which it has been shown that there exist
a fundamental constraint on the lowest admissible
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Figure 1. Feedback loop over an AWGN channel

SNR required to stabilise an unstable plant. More
specifically, it has been shown that, in order to achieve
closed-loop stability, the SNR (2) must satisfy the
constraint

P

Φ
>

m∑

k=1

2 Re {pk} > 0, (3)

where pk, k = 1, 2, . . . ,m, are the open loop unstable
poles of G(s).

Control over communication channels has attracted
increasing interest in recent years and, in particular, a
number of works have considered feedback stabilisa-
tion subject to quantisation effects and data-rate con-
straints (e.g., Delchamps, 1990; Wong and Brockett,
1999; Elia and Mitter, 2001; Nair and Evans, 2002;
Ishii and Francis, 2003; Liberzon, 2003). The work
in Braslavsky et al. (2004), although in a completely
different scenario, was inspired mainly by the work in
Nair and Evans (2002).

Despite the disparity in their derivations, a remarkable
link can be drawn between the SNR constraint (3) and
the main result in Nair and Evans (2002). Namely, if
one assumes that the discrete-time system considered
in Nair and Evans (2002) arises as the discretisation
with sampling period T of a continuous-time plant
G(s), then the lowest data-rate R/T (bits per sec-
ond) required for stabilisation must satisfy the positive
lower bound constraint

R
T
> log2 e

m∑

k=1

Re {pk} , (bits per second), (4)

where, again, pk, k = 1, 2, . . . ,m, are the open loop
unstable poles of G(s). On the other hand, the capacity
C of a continuous-time AWGN channel as in Figure 1
— assuming no bandwidth restrictions — can be made
arbitrarily close to (Cover and Thomas, 1991, p. 250)

C =
P

2Φ
(log2 e) (bits per second). (5)

Hence, from (3), the maximum channel capacity (5)
permitted by Shannon’s Theorem must satisfy

C > log2 e
m∑

k=1

Re {pk} , (bits per second), (6)

which coincides with (4) — assuming maximum ca-
pacity can be attained. This link reinforces the sugges-
tion made in Nair et al. (2004) that such fundamental
limitation is determined only by the unstable poles
of the system, independently of quantisation effects,
coding, decoding and control schemes.

In subsequent work (Middleton et al., 2004), the au-
thors extended the results of Braslavsky et al. (2004)
to non-minimum phase systems, and showed that the
existence of non-minimum phase zeros, in addition to
unstable poles, increase the lower bound (3). It was
also shown in that paper that the additional term can
be arbitrarily reduced by using a linear sampled-data
controller with fast sampling, again recovering Nair
and Evans’s formula. Such recovery, however is only
possible at the expense of stability robustness.

This paper extends the continuous-time results of
Braslavsky et al. (2004) to plants with an input-output
time-delay. Time delays are an intrinsic characteristic
of non-ideal communications and pose fundamental
constraints in networked control systems performance
(e.g., Lian et al., 2002). The main contribution of
this paper is a formula that quantifies the additional
penalty imposed by a time delay on the lowest admis-
sible SNR required to stabilise an unstable plant over
the AWGN channel of Figure 1.

The rest of the paper is organised as follows: prelimi-
naries and technical results are presented in Section 2,
together with an illustrative example and some links
and interpretations. All proofs are given in Section 3.
Section 4 presents some concluding remarks.

2. RESULTS

Consider the continuous-time, single-input single out-
put scheme of Figure 1, where the plant is given by

G(s) = G0(s) e−sτ, (7)

where τ ≥ 0 is a fixed time delay, and G0(s) is
a rational and strictly proper transfer function. For
simplicity, we assume that G0(s) has no zeros in the
closed right half of the complex plane C+.

Since the closed-loop is stable, the transmitted control
signal us resulting from the noise input n is a station-
ary stochastic process with Gaussian distribution and
power given by

‖us‖
2
RMS =

(

1
2π

∫ ∞

−∞

trace
{

T ( jω)T ′( jω)
}

dω

)

Φ

= ‖T‖2H2
Φ, (8)

where T (s) is the closed loop transfer function be-
tween n and us,

T (s) =
K(s)G(s)

1 + K(s)G(s)
. (9)

We aim to find the lowest value of the SNR P/Φ
compatible with stability of the closed-loop, which,
in view of (2) and (8), amounts to minimising the H2

norm of the transfer function T (s) over the set of all
internally stabilising proper LTI controllers KG.

In order to state the main result, introduce a minimal
state space realisation of G0(s) defined by the matrices



[

A B
C 0

]

=





[

A1 0
0 A2

] [

B1

B2

]

[

C1 C2

]

0





,
A ∈ Rn×n, B ∈ Rn×1,

C ∈ R1×n,

(10)

in which the spectrum of A1 consists of all the poles
of G0(s) in C+.

Introduce also the state feedback matrix

F = B′P, where P =
[

P1 0
0 0

]

∈ Rn×n, (11)

and P1 is the unique symmetric and positive definite
solution of the minimum energy Riccati equation

P1A1 + A′1P1 = P1B1B′1P1. (12)

The main result of the paper follows.

Theorem 2.1. Consider the feedback loop of Figure 1.
Assume that the plant G(s) is proper; has m poles
pk, k = 1, 2, . . . ,m and no zeros in C+, and an input-
output time delay τ ≥ 0. Assume also that K(s)
is proper and such that the closed loop is internally
asymptotically stable.

Then,

inf
K∈KG

‖T‖2H2
=

m∑

k=1

2 Re {pk} +

∫ τ

0
FeAσBB′eA′σF′ dσ,

(13)
where A, B and F are given in (10) and (11).

Together with (2) and (8), Equation (13) implies that
the lowest SNR required for closed-loop stability on
the system of Figure 1 is

P

Φ
>

m∑

k=0

2 Re {pk} + η, (14)

where the nonnegative term

η ,

∫ τ

0
FeAσBB′eA′σF′ dσ ≥ 0 (15)

represents the cost added by the time delay with re-
spect to the delay-free case (3). A similar expression
is obtained in Mirkin and Raskin (2003, Lemma 9).

Note that although η depends on the full matrices A
and B, only the unstable poles of the system (i.e.,
the eigenvalues of A1) contribute to the cost, because
of the modal structure of the realisation (10) and the
structure of the minimum energy gain F in (11).

Example 2.1. For a plant with a single unstable pole
at s = p we have that A1 = p and B1 = 1 are suitable
matrices in the minimal realisation (10), and therefore
solving (12) we obtain F = −2p. Then (15) gives

η =

∫ τ

0
(2p)2(ept)2dt = 2p

(

e2pτ − 1
)

,

and thus the SNR required for stability from (13) is

P

Φ
> 2pe2pτ. (16)

We see that the lowest admissible SNR required to
stabilise this system increases by a factor that grows
exponentially with the time delay in the loop. �

For a plant with more than one unstable pole it seems
hard to obtain a general closed-form expression for η
displaying the explicit dependence on the poles and
time delay as in (16). However, we can derive a “tight”
upper bound of η (tight in the sense that the bound
approaches the exact value as τ→ 0), as shown next.

Corollary 2.2. Under the conditions of Theorem 2.1,

inf
K∈KG

‖T‖2H2
=





m∑

k=1

2 Re {pk}



 e{
∑m

k=1 2 Re{pk}τ} − O(τ2),

≤





m∑

k=1

2 Re {pk}



 e{
∑m

k=1 2 Re{pk}τ}. (17)

From (2) and (17), a sufficient condition for closed-
loop stabilisability can then be simply expressed as

P

Φ
>





m∑

k=1

2 Re {pk}



 e{
∑m

k=1 2 Re{pk}τ}. (18)

The conservativeness of this condition reduces as τ2

as τ → 0. However, as will be clear from the proof of
the Corollary in § 3.2, the location of the poles also
plays a role, as we illustrate in the following example.

Example 2.2. Suppose that the plant has two real dis-
tinct unstable poles p1, p2 > 0. For simplicity, take
(and this is generic for two real distinct poles):

A1 =

[

p1 0
0 p2

]

and B1 =

[

1
1

]

. (19)

After some work, the minimum energy cost matrix P1

can be obtained from (12) as

P1 =
2(p1 + p2)
(p1 − p2)2

[

p1(p1 + p2) −2p1 p2

−2p1 p2 p2(p1 + p2)

]

,

and thus, the minimum energy feedback gain F is

F =
(p1 + p2)
(p1 − p2)

[

2p1 −2p2

]

. (20)

It then follows after a little algebra that for this case:

inf
K∈KG

‖T‖2H2
= 2(p1 + p2)e2(p1+p2)τ

×

[

(p1e−p1τ − p2e−p2τ)2
+ p1 p2 (e−p1τ − e−p2τ)2

(p1 − p2)2

]

︸                                                       ︷︷                                                       ︸

γ

.

(21)

Figure 2 plots the term γ from (21) for different values
of p1 and p2 in the interval [0, 5] and τ = 0.25 (top)
and τ = 1 (bottom). We can see that 0 ≤ γ ≤ 1 and
also that the surface flattens down (which means that
the bound (17) becomes more conservative) for larger
τ and p1 ≈ p2. �
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Figure 2. Plots of γ vs. p1 and p2 for τ = 0.25 and 1

3. PROOFS

The key instrument to prove Theorem 2.1 is a coprime
factorisation of a plant with a time delay. See Mirkin
and Raskin (2003) and the references therein for more
comprehensive treatments.

Lemma 3.1. Let G(s) = G0(s)e−sτ, with τ ≥ 0 and
G0(s) a strictly proper, minimum phase, but possibly
unstable rational transfer function. Let

[
A B
C 0

]

be a
minimal realisation of G0(s), and let L be any constant
matrix such that (A − LC) is Hurwitz. Introduce the
transfer functions

N(s) = e−sτN0(s),

with N0(s) = C(sI − A + LC)−1B, and

D(s) =
1

1 +C(sI − A)−1L
.

Then, N(s),D(s) ∈ H∞ and G(s) = N(s)/D(s) is a
coprime factorisation of G(s).

Moreover, let F be a stabilising state feedback matrix
such that (A − BF) has the same eigenvalues as (A −
LC). Then the transfer functions

X(s) = FeAτ(sI − A + LC)−1L, (22)

Y(s) = 1 + FeAτ(sI − A + LC)−1Be−sτ

+ F
(

I − e−(sI−A)τ
)

(sI − A)−1B, (23)

are both in H∞ and satisfy the Bezout identity

N(s)X(s) + D(s)Y(s) = 1. (24)

PROOF. We first show that N(s),D(s) ∈ H∞. It is
obvious that N(s) ∈ H∞ since, by definition, its poles
are the eigenvalues of (A− LC), which is Hurwitz. On
the other hand, note that we can represent D(s) by the
feedback loop in Figure 3, which in turn has the state
space realisation

ẋ = Ax + L(u − y) = (A − LC)x + Lu

y = Cx.
(25)

From (25), the poles of D(s) are also the eigenvalues
of (A − LC), and thus D(s) is also in H∞.
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Figure 3. Feedback representation of D(s)

We now show that N(s)/D(s) is a factorisation of G(s).
By using the Sherman-Morrison-Woodbury formula
(Golub and Van Loan, 1996, p. 50) on the matrix (sI−
A + LC)−1 we can write

N0(s) = C(sI − A + LC)−1B

= C(sI − A)−1B

−C(sI − A)−1L
(

1 +C(sI − A)−1L
)−1

C(sI − A)−1B

=

(

1 −
C(sI − A)−1L

1 +C(sI − A)−1L

)

C(sI − A)−1B

=
C(sI − A)−1B

1 +C(sI − A)−1L
.

Thus,

N(s)
D(s)

= e−sτN0(s) (1 +C(sI − A)−1L)

= e−sτC(sI − A)−1B = G(s).

Finally, we show that N(s) and D(s) are coprime, that
is, that there exist transfer functions X(s),Y(s) ∈ H∞
such that the Bezout identity (24) is satisfied. Consider
the transfer functions X(s) and Y(s) defined in (22) and
(23).

It is straightforward from (22) that X(s) is a rational,
stable and proper transfer function, and is therefore in
H∞. On the other hand, Y(s) is in H∞ if the term

H(s) , F(I − e−(sI−A)τ)(sI − A)−1B (26)

in (23) is in H∞. Because H(s) has an impulse re-
sponse h(t) that vanishes outside the interval [0, τ),

h(t) =






FeAtB if 0 ≤ t < τ

0 if t ≥ τ,
(27)

it follows that H(s) is uniformly bounded in the closed
right half plane, since for s = re jθ



|H(re jθ)|2 =
∣
∣
∣
∣
∣

∫ τ

0
FeAtBe−rte jθ

dt
∣
∣
∣
∣
∣

2

≤

∫ τ

0
FeAtBB′eA′tF′dt ×

∫ τ

0
e−2rt cos θdt,

(by Cauchy-Schwarz Inequality)

= ‖h(t)‖22 ×
1 − e−2rτ cos θ

2r cos θ
≤ ‖h(t)‖22τ < ∞, if θ ∈ [−π/2, π/2].

Thus, both H(s) and Y(s) ∈ H∞.

To show that N(s),D(s), X(s) and Y(s) satisfy the
Bezout identity (24), note that

Y(s) = 1 + Fe−(sI−A)τ(sI − A + LC)−1B

+ F(I − e−(sI−A)τ)(sI − A)−1B

= 1 + F(sI − A)−1B + Fe−(sI−A)τ

×
[

(sI − A + LC)−1 − (sI − A)−1
]

B

= 1 + F(sI − A)−1B − Fe−(sI−A)τ(sI − A + LC)−1

× LC(sI − A)−1B

= 1 + F(sI − A)−1B − X(s)
N(s)
D(s)
.

Hence,

D(s)Y(s) + N(s)X(s) = D(s)
[

1 + F(sI − A)−1B
]

=
1 + F(sI − A)−1B
1 +C(sI − A)−1L

= 1,

which follows from noting that

(i) the zeros of 1+C(sI −A)−1L are the eigenvalues
of A − LC,

(ii) the zeros of 1+F(sI −A)−1B are the eigenvalues
of A−BF, which are the same as those of A−LC,

(iii) the poles of 1+C(sI −A)−1L are the eigenvalues
of A,

(iv) the poles of 1+F(sI −A)−1B are the eigenvalues
of A,

(v) lims→∞
1 + F(sI − A)−1B
1 +C(sI − A)−1L

= 1. �

3.1 Proof of Theorem 2.1

We use the coprime factorisation G(s) = N(s)/D(s)
and X(s) and Y(s) from Lemma 3.1 with F as in (11),
and L such that (A − LC) has the same spectrum as
(A − BF). Without loss of generality, we assume from
now on that A has no eigenvalues on the jω-axis, so
that (A − BF) is Hurwitz as required in Lemma 3.1. 4

From the above coprime factorisation, all stabilising
LTI controllers for G(s) are parametrised as

K(s) =
X(s) + D(s)Q(S )
Y(s) − N(s)Q(s)

, (28)

4 Otherwise, our arguments can be carried out in the same manner
by taking Fε = B′Pε, where Pε is the unique symmetric positive
definite solution of the perturbed minimum energy Riccati equation
PεA + A′Pε = PεBB′Pε − ε2I, where ε is a small parameter. The
matrix (A − BFε) will then be Hurwitz for all ε > 0, and we would
obtain (13) in the limit as ε→ 0.

where Q(s) is an arbitrary transfer function in H∞, and
the transfer function T (s) between n and y in Figure 1
can be written as

T (s) = 1 − D(s)Y(s) + D(s)N(s)Q(s).

Notice that because F is the minimum energy state
feedback gain, the spectrum of (A − BF), and that of
(A− LC) by assumption, consists of the open loop sta-
ble eigenvalues of A and the mirror image with respect
to the jω-axis of the open loop unstable eigenvalues of
A. Thus D(s) is all pass and following similar steps to
those in Middleton et al. (2004, Appendix A) it can be
shown that

inf
Q∈H∞

‖T‖2H2
=

m∑

k=1

2 Re {pk} + inf
Q∈H∞

‖1 − Y + NQ‖2L2

=

m∑

k=1

2 Re {pk}

+ inf
Q∈H∞

‖esτ(1 − Y) + N0Q‖2L2
. (29)

Now, from (23), the term esτ(1 − Y(s)) in (29) is

esτ(1 − Y(s)) = −esτH(s)
︸    ︷︷    ︸

∈H⊥2

− FeAτ(sI − A + LC)−1B
︸                       ︷︷                       ︸

∈H2

,

where H(s) is as defined in (26). Because the im-
pulse response of H(s) vanishes outside [0, τ], that of
esτH(s) vanishes outside [−τ, 0) and thus esτH(s) ∈
H⊥2 . On the other hand, FeAτ(sI − A + LC)−1B ∈ H2,
since it is rational, strictly proper and stable. Hence, in
(29),

inf
Q∈H∞
‖esτ(1 − Y) + N0Q‖2L2

= ‖esτH(s)‖2L2

+ inf
Q∈H∞

‖ − FeAτ(sI − A + LC)−1B + N0Q‖2L2

= ‖H(s)‖2L2
,

(because esτ is all pass and N0(s) minimum phase)

= trace
∫ τ

0
FeAtBB′eA′tF dt,

where the last step follows from using Parseval’s for-
mula and the expression of the impulse response of
H(s) in (27), which concludes the proof. �

3.2 Proof of Corollary 2.2

To prove Corollary 2.2 we will use (13) and the
following fact.

Fact 1. (Rugh (1995, Exercise 7.12, p.127)). Given any
two real matrices A,M ∈ Rn×n, if there exists a matrix
Q ∈ Rn×n such that QA′ + AQ = M, then for all τ ≥ 0
∫ τ

0
eAσMeA′σ dσ = eAτQeA′τ − Q.

Proof of Corollary 2.2

For technical simplicity suppose that A has no eigen-
values on the jω-axis (see Footnote 4), and let Q be



the unique positive definite solution of the Lyapunov
equation QA′ + AQ = BB′. Then, from Fact 1,

∫ τ

0
FeAtBB′eA′tF′ dt = F(eAτQeA′τ − Q)F′. (30)

Let F = B′P as in Lemma 2.1. By replacing F = B′P
in (30) we obtain

trace
{

F(eAτQeA′τ − Q)F′
}

= trace
{

B′P(eAτQeA′τ − Q)PB
}

,

= trace
{

PBB′P(eAτQeA′τ − Q)
}

,

= trace
{

(PA + A′P)(eAτQeA′τ − Q)
}

, (31)

since PBB′P = PA+A′P. Now, by expanding (31) and
using the properties AeAτ

= eAτA, trace {M + N} =
trace {M} + trace {N}, and trace {MN} = trace {NM},
and then collecting factors, we have

trace
{

F(eAτQeA′τ − Q)F′
}

= trace
{

(eA′τPeAτ − P)(AQ + QA′)
}

,

= trace
{

B′(eA′τPeAτ − P)B
}

, since AQ + QA′ = BB′,

= trace
{

B′1(eA′1τP1eA1τ − P1)B1

}

, from (10) and (11),

= trace
{

B′1P1/2
(

eΓ
′τeΓτ

)

P1/2
1 B1

}

− B′1P1B1, (32)

where Γ = P1/2AP−1/2.

Note that in general eΓ
′τeΓτ , e(Γ′+Γ)τ, and it can be

shown that equality holds if and only iff ΓΓ′−Γ′Γ = 0.
Otherwise, a result due to Cohen (1988) states that

λmax

(

eΓ
′τeΓτ

)

≤ λmax

(

e(Γ′+Γ)τ
)

, (33)

where λmax(·) denotes the maximum eigenvalue. The
inequality (33) and the fact that

trace
{

Γ
′
+ Γ

}

= trace
{

P−1/2
1 A′P1/2

1 + P1/2
1 AP−1/2

1

}

= B′1P1B1 =

m∑

k=1

2 Re {pk} ,

in (32) yield (17). The O(τ2) equality in Corollary 2.2
follows from (32) and the fact that

e(Γ′+Γ)τ − eΓ
′τeΓτ = O(τ2)

(

ΓΓ
′ − Γ′Γ

)

,

as may be verified by a Taylor expansion (Bellman,
1970, p. 173). �

4. CONCLUSIONS

This paper has extended the bound from Braslavsky
et al. (2004) on the lowest SNR required for feedback
stabilisation over a SNR constrained communication
channel to plants with a time delay. An exact expres-
sion for the additional penalty introduced by the time
delay was given, and also a bound showing the explicit
dependence on unstable poles. The bound grows expo-
nentially on the time delay and the unstable poles of
the system. This bound is less conservative for small
time delays, and otherwise, a nonconservative numer-
ical estimate cost could be computed by approximat-
ing the delay with a Padé approximant and using the
formula for the critical SNR derived for nonminimum
phase plants in Middleton et al. (2004).
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