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Abstract: Due to slow time variation, variable run length and nonlinearity of sequencing 
batch reactor (SBR) wastewater treatment batch process, a multivariate statistical MPCA 
model based on double moving window along the time×variable axis and batch-axis is 
used for online monitoring the progress of sequencing batch reactor. Moving window 
MPCA along the time×variable axis can copy seamlessly with variable run length and 
needn’t estimate any deviations of the ongoing batch from the average trajectories. The 
MPCA model was updated by moving along the batch-axis. The proposed method has 
demonstrated that it performs better than traditional MPCA. Copyright © 2005 IFAC 
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1. INTRODUCTION1 

 
Sequencing batch reactor (SBR) is an effective 
wastewater treatment mode, which is a typical batch 
process. Aeration and sludge settlement operates in 
the same tank by stages. Traditionally, monitoring 
the batch processes check whether they operated in 
precise sequencing and their variations within the 
specified trajectory, which is difficult to traditional 
SPC charts. Due to the flexibility, finite duration, 
nonlinear behaviours and unsteady state, batch 
processes suffer a lack reproducibility form batch to 
batch variations due to disturbances and the absence 
of online quality measurements. The variations may 
be difficult for an operator to discern, but could have 
an adverse effect on the final product quality. 
Monitoring these batch processes is very important to 
ensure their safe operation and to assure consistently 
high quality products. 
 
The use of the multivariate statistical projection 
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methods has been extended to the analysis and the 
online monitoring of batch processes. MacGregor 
and Nomikos (1994 1995) presented a Multiway 
principal component analysis (MPCA) approach for 
monitoring batch processes, and test results show that 
the method is simple and powerful. MPCA is an 
extension of PCA for three-dimensional batch data 
and can explain the variation of the measured 
variables around the average trajectories. If quality 
measurements are available, one can use MPLS to 
monitor the progress of the batch and predict its final 
quality (MacGregor, Nomikos et al. 1995).  
 
There are three potential problems in using MPCA 
on SBR process. The first problem is that MPCA 
methods have the assumption that batches are of 
equal duration and are synchronized. The batches 
must be aligned in time before any subsequent 
projection-based method is applied. Due to the 
hydraulic changes and composition variations, this is 
not the case almost all of the time in the real 
processes. The second problem is that MPCA model, 
once built from the data, is time-invariant, while 
most real industrial processes are slow time-varying, 
such as equipment aging, sensor and process drifting, 
and preventive maintenance and cleaning. The last 



 

 

problem is that MPCA is a linear method, but SBR is 
a complex nonlinear process. Linear methods may 
not be efficient in compressing and extracting 
nonlinear data. 
 
Several different methods have been proposed to 
handle these problems. MPCA method can only be 
used on-line up until the shortest run length 
encountered in the nominal batches. Kassidas 
proposed a combination of Dynamic time warping 
and MPCA/MPLS for reconciling the time difference 
among batch-to-batch trajectories (Kassidas, 
MacGregor et al. 1998). But it dependents on 
mapping a profile onto another profile and the 
computation time to do DTW is excessively lengthy. 
Lennox used moving window MPCA method to 
effectively monitor bioprocess industry (2002) In 
view of time-varying behavior, Wold discussed the 
use of exponentially weighted moving average 
(EWMA) filters in conjunction with PCA and PLS 
(Wold, 1994). Hierarchical PCA for adaptive batch 
monitoring is similar to EWMA based PCA.  
 
If a single linear MPCA model is used to characterize 
the entire batch process, PC number may increase 
and some faults may not be identified. In the work, 
double moving window MPCA is used to develop a 
nonlinear model for monitoring the progress of SBR 
processes.  
 
 

2. DOUBLE MOVING WINDOW MPCA FOR 
ADAPTIVE MONITORING 

 
2.1 Monitoring Strategy 
 
The Framework of the monitoring system is 
illustrated in Figure 1, which can be regarded as 
comprising three parts: data collection; double 
moving window MPCA modelling and adaptive 
monitoring. The first part, Massive amounts of 
process data are being collected and stored in 
databases. MPCA model depends on the quality of 

the normal operational regional (NOR) database. 
Therefore, outliers must be removed, missing data 
estimated, and noise filtered. Good process data are 
used to develop the MPCA model. The second part, 
multivariate statistical modelling based on double 
moving window MPCA along time×variables-axis 
and batches-axis is used within the batches to deal 
seamlessly with variable run length, and replaces an 
invariant model monitoring approach with adaptive 
updating model data structure from batch-to-batch. 
According to the operations of batch processes, local 
MPCA model has been built on each stage. Model 
parameter P and SPEα can get by the part. The last 
part is online monitoring. Some key events (e.g. 
operational information and change of the key device 
state) switch the MPCA models from one stage to 
another. For monitoring the progress of the process 
and detecting the occurrence of faults, the squared 
prediction error (SPE) charts are plotted and 
monitored. If the SPE move outside the region SPEα 
over which the model was developed, the conclusion 
is that some change or fault has occurred in the 
process.  
 
MPCA modelling using double moving window is 
illustrated in figure 2, comprising two main parts: 
moving along time×variables axis and along the 
batches axis. On the one hand, it replaces an 
invariant fixed-model monitoring approach with 
adaptive updating model data structure from batch-
to-batch, which overcomes the problem of changing 
operation condition and slow time-varying behavior 
of industrial processes. On the other hand, it uses a 
moving window scheme based on MPCA algorithm 
along measurement-axis and time-axis within the 
batches to deal seamlessly with variable run length, 
and builds a nonlinear dynamic model with multiple 
local models. It needn’t estimate the future values of 
all process measurements from the current time to the 
end of the batch operation as the new batch evolves 
for online monitoring. 

 

Fig. 1. Scheme of adaptive online monitoring using double moving window MPCA model  
 



 

 

 

 
Fig. 2. Scheme of double moving window MPCA Modeling for the batch processes  

 
 
2.2 Double Moving Window MPCA 
 
2.2.1 Moving Along Time×Variables Axis 
 
Moving window MPCA model along time×variables 
axis is defined that MPCA in each partitioned sub-
window with l time slices is decomposed into sub-
score and sub-loadings matrixes, which form the 
whole score and loading matrixes. Then the data 
window move forward with a step. If the length (l) of 
window equals to the whole run length (K) of batch 
run, moving window MPCA equals to traditional 
MPCA. Moving window MPCA equals to minimum 
window MPCA if width of window is 1 (zhao, 2003). 
Procedures of a moving window MPCA along 
time×variables axis are as follows: 
 
Step 1: Model Data Collection and Pretreatment 
Initially, a reference data set is chosen from historical 
database collected under periods considered to be 
″normal operation conditions″ (NOC). Three-
dimensional data matrix )( KJIX ××  is unfolded 
into two-dimension )( JKIX ×  in such a way as to 
put each of its vertical slices ),),,( KkJIX k L1=（  
side by side to the right. )( JKIX ×  is scaled into 
zeros mean and unit variance of each variable over 
all the batches. Length of window is l, data wX  in 
the window at w time is defined as:  

],,,[ wmlww xxxX LL1+−=             (1).  
Length of all the batches K changes from batch to 
batch, which tends toward a normal distribution at a 
time range, δ+≤≤δ− 33 KKK                          (2).  

Where, K is the batch length, K  is average length of 
all the normal batches. In this paper, batches between 

δ− 3K  and δ+ 3K  are selected for building moving 
window MPCA model. The number of batches m  at 
the moving window decreases along the time axis, 
that is 1321 +−≥≥≥ lKmmmm L . If m batches are 
available at the n time, window is defined as 

)J(mXn l××  ( 1Kn1 +−≤≤ l , ImI ≤≤0 ). 
Where I0, I is min and max number of the batches in 
the data window. If a batch length is shorter than the 
current time, then this batch is simply removed from 
the current window and other batches are selected as 
model data. Therefore, Moving window MPCA is 
proposed to handle the time difference among batch-
to-batch trajectories through changing the number of 
batch in the current window along time axis. 
 
Step 2: Minimum Window MPCA in the First window  
Moving window MPCA is extension to minimum 
window MPCA and traditional MPCA, which is done 
in two steps. In the first step, MPCA is performed 
using SVD on each time slice 

),),,( lkJIX k L1=（  in the first time 
window 1wX  using minimum window MPCA, which 
decomposed into a series of score vectors and 
loadings matrixes. 

[ ]lTTTT 112111 ,,, L=                   (3) 
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Where iT1  is the ith scores vector at the ith time 
block ),),,( lkJIX k L1=（  and forms the score 
vector 1T  of the first time window.  

 
Step 3: Moving Window MPCA in the other Windows 
MPCA performs each time window 

1,2, +−= lKnxwn L  into a summation of the 
product of score vectors (Tn) and loading matrices 
(Pn), plus a residual matrix En. Tn and Pn separately 
forms super scores vectors erTsup  and super loading 
matrix erPsup . [ ]nler TTTTTT MLMML 211211sup ,,=      (7) 
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Moving window MPCA model can be written as 
[ ]wnwjwww XXXXXX ~~~~~

321 MLMMLMMM=     (9) 
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Step 4: SPE Control Limits 
The statistics control limits for the SPEn,α with a 
significance level of α  at the nth time window is 
defined as formulas (12). Where m and v are mean 
and variance of the SPEn calculated for the nth time 
window. 

2
,2, 2)

2
( αα χ= vmn m

vSPE              (12) 

SPE is defined over entire batch run. 
[ ]α+−αααα = ,1,2,1,11 ,, lKl SPESPESPESPESPE LML (13) 

 
If SPE moves outside the region or control limit of 
the local MPCA model, some change or fault at 
current time has occurred in this batch process. The 
presented method easily extends linear MPCA with 
single model to nonlinear dynamic model with 
multiple local linear models. Its advantages are that it  

 
Fig. 3. Schematic Diagram of adaptive updating data 

using Moving Window along batch axis. 
 
does not require any estimation of the future 
measurement data and builds a whole nonlinear 
model with multiple local linear sub-models at each 
time interval. 
 
2.2.2  Moving Along the Batches Axis 
 
SBR process commonly has slow time-varying 
behaviors. It is not adequate to monitor process  
performance using an invariant fixed model. The 
previous proposed moving window MPCA is limited 
within batches run, not reflects the change of batch-
to-batch. In this paper, an adaptive scheme based on 
previous proposed moving window MPCA is 
proposed to compensate slow time-varying behavior 
by updating model data, as shown fig. 3. 
 
When a new batch is available, the new batch is 
archived in normal database if SPE move in the 
region according to the SPE chart, otherwise fault 
database. According to speed of batch change among 
batch-to-batch, time span of the moving window 

bm and moving step bh  are selected. Dropping the 

previous bh  batches in the set and adding the new 

bh  batches to the window create a new data set of 
the model. Hence, the new window overlaps all but 
previous bh  batches of old window and includes 
new information. In this approach a new covariance 
structure is identified for new batch and all batches 
inside the window frame will have a constant 
influence on the model until it leaves the window. 
 
 
2.3 Adaptive Monitoring  
 
For process monitoring using double moving window 
MPCA, new operating data is firstly projected the 
data window onto the previously selected dominant 
feature directions ( loading vector P) of MPCA . The 
procedures are followed by: 
For the first window: 
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for the 2 to n window: 

(10)
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check if the current time point is in the control limits. 
if α,kk SPESPE > shows that some abnormal 
condition has occurred in the batch at the k time; 
otherwise further analyze what caused the abnormal 
situation. 
 
 

3. CASE STUDY 
 
3.1 Process Description and Simulation Model  
 
The Sequencing Batch Reactor (SBR) is an activated 
sludge process designed to operate under non-steady 
state conditions. A SBR operates in both aeration and 
sludge settlement occurring in the same tank. The 
operating principles of SBR are characterized in six 
discrete periods: (1)anoxic fill; (2)aerated 
fill;(3)react;(4)settle; (5)decant; (6)idle, as shown 
figure 4. With the stricter discharge criterion on 
nitrogen and phosphorus removal, sequencing batch 
reactor (SBR) is widely used in wastewater treatment 
plant, which has the advantages of simple structure, 
investment saving, flexibility of control. The major 
differences between SBR and conventional 
continuous-flow, activated sludge system is that the 
SBR tank carries out the functions of equalization 
aeration and sedimentation in a time sequence rather 
than in the conventional space sequence of 
continuous-flow systems. In addition, the SBR 
system can be designed with the ability to treat a 
wide range of influent volumes whereas the 
continuous system is based upon a fixed influent 
flowrate. Thus, there is a degree of flexibility 
associated with working in a time rather than in a 
space sequence. 
 
Event-driven moving window MPCA based online 
monitoring scheme combines data information and 
knowledge (event information) of operator and 
engineer. In the paper, a simulation platform for SBR 
system has been developed based on the ASM2d 
from the IAWQ task group and a standardized COST 
benchmark simulation protocol. 
 
 

3.2 Simulation Experiment and Discussion 
 
The simulation platform is used to generate model 
data. Approximately 8 hours are needed to finish one 
batch run, where filling 2h, reaction 2.5h, settling 
1.5h, decanting 1h and idle 1h. Only the 
measurement data from the first about 360 time 
intervals in summer (420 time intervals in winter) 
were used to develop monitoring models since 
biological reactions in decanting and idle phases 
(corresponding to those of the last 120 time instants) 
were assumed as negligible. Ten measurement 
variables can be measured online during the SBR run, 
including Dissolved oxygen SO2(mg/l), readily 
biodegradable substrate SF(mg/l), inert or non-
biodegradable substrate S1(mg/l), nitrate(plus nitrite) 
SNO3(mg/l), phosphate SPO4(mg/l), bicarbonate 
alkalinity SALK(mol/l), inert or non-biodegradable 
organics X1(mg/l), slowly biodegradable substrate 
XS(mg/l) and influent flow Qin (m3/d). Dissolved 
oxygen SO2 and nitrate SNO3 curves along time axis 
for 100 batches run are shown as figure 5(a) and (b). 
First, the model is built upon 100 batches, which is 
arranged in a three-way array )36010100(X ×× . 
Scores and loading vectors are computed on each 
moving window using MPCA algorithm. The first 
data block )100100(X1 ×  is divided into 10 sub-data 
block )10100(X k,1 × , which decomposed into sub-
score vector 10111 ,, , TT L and sub-loading 
vector 10,11,1 P,P L , which form the first score 1T  and 
loading matrix 1P . Score matrix nT  and loading 
matrix nP  form a super score and loading matrix. 
Partial model parameters of the MPCA are shown as 
table 1, where PCs is retained number of principal 
components in the window, P loading matrix. 
 

Table 1 Partial model parameters 
                                      
No. PCs          P   95% SPE  99% SPE 
1  1 P(10×1)  6.6135 10.1593 
50 2  P(100×2) 5.7541 8.9480 
100 3 P(100×3) 4.3358 6.7497 
150 1  P(100×1) 3.3531 5.4729 
200 2 P(100×2) 1.9608 3.4714 
250 2 P(100×2) 4.9137 8.7217 
300 2 P(100×2) 5.8213 9.5575 
350 2 P(100×2) 4.7312 7.7119 

 

 
 
Fig. 4. Flow chart of Sequencing Batch Reactor Operation  

 
  



 

 

 
(a) Dissolved oxygen SO2  

 
(b) Nitrate SNO3  
Fig. 5. Partial curves of Model data for 100 cycles 
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Fig. 6. SPE charts using traditional MPCA 

 
Fig. 7. Adaptive online monitoring for the batch 

process 
 

The moving window MPCA model is tested on the 
batch not included in the model database. Figure 6 
indicates a normal summer SBR with the run length 
of 300 exceeds SPE confidence limit when it is 
projected on a winter SBR model without adaptive 
monitoring. Figure 7 indicate that SPE of the test 
normal SBR summer is less than SPEα using the 
proposed method in the paper, which shown in the 
normal operation through SPE chart. The simulation 
demonstrates the valid of updating model within 
batch to batch using moving window method.  
 
 

4. CONCLUSIONS 
 

In the paper, double moving window MPCA is used 
to online monitoring of SBR for wastewater 
treatment. The proposed monitoring method is driven 
only from historical measurement data sets of batch 
processes, which built the whole dynamic batch 
process model by multiple local MPCA models in the 
sub-window data space. It uses double moving 
window mechanisms for adaptively updating model 
data structure within batch-to-batch and sufficiently 
expressing non-liner dynamic characters along time 
trajectory. It is natural extension to minimum 
window MPCA (minimum window length) and 
traditional MPCA (maximum window length) using 
moving scheme along time axis. SBR wastewater 
treatment is used to demonstrate implementation of 
process performance monitoring and fault detection 
for improved capability. This approach can be also 
applied in on-line quality control situations. 
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