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Abstract: In most chemical processes only some measurements are available online while
other measurements are available infrequently and often with long delays. Multirate state
estimation can optimally combine these different classes of measurements to improve the
estimation quality compared to the fast measurements alone. The nature of measurements at
different sampling intervals which are subject to delays makes the application of traditional
one step state estimators cumbersome. There is but one stateestimation scheme which
naturally suggests the inclusion of these different classes of measurements, the Moving
Horizon Estimator (MHE). In this paper, we extend the MHE concept to the multirate case
(MMHE). We present two forms, a variable structure and a fixedstructure MMHE and present
the relevant equations. We recommend the fixed structure estimator as it has superior noise
reductions qualities. The proposed scheme is supported by asimulation example.Copyright
c©2005 IFAC
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1. INTRODUCTION

In most chemical processes, only some measurements
such as temperatures and flow rates are available on-
line, whereas other variables such as concentrations
are usually measured infrequently and possibly with
long delays. Often, measurements of the other state
variables of the process are not available at all (inner
states). For process operation, optimisation and online
control it is often desirable to know all states of the
system. State or parameter estimation is therefore part
of many advanced control and optimisation strategies.
In this paper, we extend the nonlinear Moving Horizon
Estimator (MHE) to a Multirate MHE (MMHE) as the
horizon allows for the inclusion of time delays and
naturally suggests the use of measurements at different
sampling intervals. We present two forms, a variable
structure and a fixed structure MMHE and present the
relevant equations. We advocate the use of the fixed
structure because it distributes the correction caused
by the slow measurements over the slow sampling
period, leading to a smoother estimation. Simulation
results are given to underline our findings.

Multirate state estimation is related to multirate con-
trol, which is well known.Glasson (1983)defines
multirate output control, where many outputs are sam-
pled before one control action is performed, and mul-
tirate input control, where many control actions are
performed to influence one sampled output. The con-
sidered state estimation schemes are related to and
useful for multirate input control.

An iterated EKF (Jazwinski, 1970) with variable
structure for an augmented linearisation of the non-
linear system was developed byGudi et al. (1995)
and applied to a bioreactor. The iterated EKF was
used as strong nonlinearities are present in the output
equation.Myers et al. (1996) report a similar appli-
cation, where a variable structure EKF was used and
the states were re-estimated from the point in time
when the second measurement becomes available. Al-
though simple, the approach results in better estimates
as additional information is used.Mutha and Cluett
(1997)developed an EKF with fixed lag smoothing,
where a variable structure EKF was used. The authors
showed that better results could be obtained for an



example which is not observable from the fast mea-
surements alone.

A different approach based on the concept of the non-
linear reduced observer (Soroush, 1997) was reported
by Zambare et al. (2001). In this estimator, the miss-
ing samples of the slow measurement are compensated
by a polynomial extrapolation, which in contrast to the
model does not react to input changes. This results
in a large error in the case of changes of the inputs.
Their “illustrative example” clearly shows this prob-
lem without it being raised by the authors.

2. MULTIRATE STATE ESTIMATION

In the literature, multirate systems are often defined as
systems where the measurements and the controls are
sampled or applied at different sampling rates. Here
we consider the case where in a multivariate system
different measurements are available at different sam-
pling rates and with different delays.

For clarity, the derivations are performed for sampled
systems with two measurement vectors, one of which
is available at a fast sampling rate while the other one
is available at a slow sampling rate. A slow sampling
point always coincides with a fast sampling point. We
label the time between two slow sampling points the
intersampling period. The slow sampling time and the
time delay are integer multiples of the fast sampling
time. Three different situations can be considered,
which are depicted in Figure 1.

If j is a step fromt to t + ∆t with ∆t being the fast
sampling interval andTS represents the number of
steps between the slow sampling points, the class of
systems considered can be written as

x j+1 = F(x j ,u j) (1)

y j =

{

HF(x j) j/TS /∈ N

HFS(x j ,x j−td) j/TS ∈ N

whereF indicates fast,S indicates slow andFS indi-
cates the use of both measurements. Atk/TS ∈ N, the
separationyT = (yF ,yS) has to be possible.

Traditional multirate state estimation is used for
smoothing of control action, i.e. the controller sam-
pling rate is faster than the measurement sampling
rate and thus the estimator interpolates between the
measurements by setting the error constant for the
intersampling points. Such a state estimator without
time delay is written as

x̂k+1 = F(x̂k,uk)+K (yl −H(x̂l )) , l = TS

⌊

k
TS

⌋

(2)

where⌊.⌋ indicates the nearest smaller integer value.
The alternative way of using the state estimator is
to only apply correction action when measurement
information is available, i.e.

x̂k+1 = F(x̂k,uk)+

{

K (yl −H(x̂l )) l = k

0 l 6= k
(3)

l = TS·

⌊

k
TS

⌋

Estimator (2) reaches a smoother error decay than
estimator (3) and is less susceptible to noisy mea-
surements due to the smaller gain needed. However,
the system cannot reach the correct steady state at the
intersampling points.

This method can be extended to multirate measure-
ments, whereby the time delay is ignored for clarity.
Settingl = TS · ⌊k/TS⌋, the variable and fixed structure
state estimators can be written as follows:

• Variable structure

x̂k+1 = F(x̂k,uk)+










KF (

yk−HF(x̂k)
)

l 6= k
(

KF (

yk−HF(x̂k)
)

KS(

yl −HS(x̂l )
)

)

l = k
(4)

• Fixed structure

x̂k+1 = F(x̂k,uk)+K
(

yF
k −HF(x̂k)

yS
l −HS(x̂l )

)

(5)
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Measurement 2 (result)
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(a) Measurement 2 is available at
longer sampling intervals

Measurement 2 (sampling)

Measurement 2 (result)

Measurement 1 (high frequeny)
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t

td∆t
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(b) Measurement 2 is available with a
delay at the same sampling frequency
as the fast measurement

Measurement 2 (sampling)
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(c) Measurement 2 is available with a
delay and at longer sampling intervals

Fig. 1. The different measurement cases (TS – intersampling rate,td – time delay,∆t – sampling time)
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Fig. 2. Multirate MHE (MMHE): Lower co-ordinates
are the estimates, upper co-ordinates are the used
measurements, horizon is framed. (·) is the sam-
pling point, (◦) is the time when the slow mea-
surement becomes available and (×) is the sam-
pling of the fast measurement.

3. MULTIRATE MOVING HORIZON
ESTIMATOR

A Kalman Filter can be formulated as an optimal
state regulator problem and the covariance matrices
can be generally considered as weighting matrices of
the estimation errors. The solution to this optimisa-
tion problem is given by the Matrix-Riccati-Equation
(Jazwinski, 1970). Due to the increase in computa-
tional speed and improvements in software for solving
optimisation problems, optimisation based approaches
have been developed in the last decades (Janget
al., 1986; Muskeet al., 1993). Here, the calculation
of the correction part of the EKF is replaced by an
optimisation problem. The major advantage is the ca-
pability of incorporating constraints and thus forcing
the estimator into a physically sensible solution using
additional process knowledge. Imposing constraints is
especially important for nonlinear estimation as the
estimator may converge to a physically wrong solution
(Gesthuisenet al., 2001). Such an estimator is called
the Constrained Extended Kalman Filter (CEKF).

For the Moving Horizon Estimator formulated by
Muskeet al. (Muskeet al., 1993) the concept of the
CEKF is extended over a given horizon. The devel-
opment of the MHE therefore follows naturally from
a combination of the Batch Least Squares Estima-
tor (Jazwinski, 1970) and the recursive nature of the
Extended Kalman Filter. Its major advantage is that
within the horizon all process information is used and
the nonlinear model is not linearised. In the BLS, ev-
ery new measurement increases the size of the optimi-
sation problem, which is why for practical application

the size of the optimisation problem has to be limited.
Muskeet al.(1993) developed a recursive formulation
on a moving horizon. According to the notation of
Muskeet al., the horizon length isN and the number
of used measurementsN +1. x̂ j|k is the estimation of
the state vector at timet = t j using measurements up
to t = tk. Pk−N, Q and R are weighting matrices of
the estimation, model and measurement error, respec-
tively. Muskeet al. use the same covariance matrices
as in a similar EKF.

The Multirate Moving Horizon Estimator (MMHE)
uses the concept of the MHE, i.e. the incorporation
of past measurements, to cope with multirate mea-
surements and time delays without the need for an
augmented system or re-iteration. Figure 2 shows the
way this is done: When the time delay is passed, the
slow measurement is included in the horizon at the
sampling point. This is the reason why the horizon
lengthN should always be at leasttd.

The formulation of the MMHE is based on a nonlinear
model of the form

xk+1 = F(xk,uk)+ξk (6)

yk =

{

HF(xk)+ϕF
k

k/TS /∈ N

HFS(xk,xk−td)+ϕFS
k

k/TS ∈ N

with ϕFS = (ϕF ϕS)T . (7)

The MMHE directly derived from the MHE results in
a variable structure form. This is the one shown in
Figure 2 as only the measurements, which are really
available, are used in the horizon. Under the viable
assumption

RFS
var =

(

RF 0
0 RS

var

)

, Rfixed =

(

RF 0
0 RS

fixed

)

(8)

its formulation is given as follows:

min
ξ̂,ϕ̂F ,ϕ̂S

Ψk = ξ̂T
k−N−1|kP

−1
k−N|k−1ξ̂k−N−1|k

+
k−1

∑
j=k−N

ξ̂T
j|kQ

−1ξ̂ j|k (9)

+
k

∑
j=k−N

(

ϕ̂F
j|k

)T
(

RF)−1 ϕ̂F
j|k

+
k

∑
j=k−N

j−td≥k−N
j/TS∈N

(

ϕ̂S
j|k

)T
(

RS
var

)−1 ϕ̂S
j|k

s.t. x̂k−N|k = x̂k−N|k−1 + ξ̂k−N−1|k

x̂ j+1|k = F(x̂ j|k,u j)+ ξ̂ j|k

j = k−N, . . . ,k−1



ϕ̂F
j|k = y j −HF(x̂ j|k)

j = k−N, . . . ,k ∧ j/TS /∈ N
(

ϕ̂F
j|k

ϕ̂S
j|k

)

= y j −HFS(x̂ j|k, x̂ j−td|k)

j/TS ∈ N∧ j − td ≥ k−N

ξmin ≤ ξ̂ j−1|k ≤ ξmax

ϕF
min ≤ ϕ̂F

j|k ≤ ϕF
max

ϕS
min ≤ ϕ̂S

j|k ≤ ϕS
max

xmin ≤ x̂ j|k ≤ xmax

It has to be noted that in contrast to the original ap-
proach proposed in (Muskeet al., 1993) the initial
state vector at the beginning of the horizon is based
on the measurements up to timet = tk−1, i.e. it is a
smoothed vector instead of a predicted one (x̂k−N|k−1
instead ofx̂k−N|k−N−1). This formulation of the MHE
is proposed byTenny (2002)and improves the perfor-
mance of the estimations. The prediction also has to
be used in the variable structure.

x̂i+1|k−1 = F(x̂i|k−1,ui) (10)

Pi+1|k−1 = A i|k−1

(

Pi|k−2−Pi|k−2HT
i|k−1

(

H i|k−1Pi|k−2HT
i|k−1 +R

)−1

H i|k−1Pi|k−2
)

AT
i|k−1 +Q (11)

with H i|k−1 =







∂HF (x)/∂x
∣

∣

x̂i|k−1
i/TS /∈ N

∂HFS(x)/∂x
∣

∣

x̂i|k−1
i/TS ∈ N

R =

{

RF i/TS /∈ N

RFS i/TS ∈ N
,

A i|k−1 = ∂f(x)/∂x|x̂i|k−1

and i = k−N−1

Unfortunately, this variable structure results in step
wise improvement of the estimation. AsP can change
dramatically when more measurements are available,
it is also believed that cycling behaviour can occur.
Figure 3 shows this behaviour for the estimation of
the leakage in a linearised three tank system. While for
some systems this stepping behaviour is an advantage,
for most systems using the estimation for multirate
input control, the smooth error decay of a fixed struc-
ture state estimator, as also shown in the figure, is the
preferable choice.

This fixed structure places thelast error (yl − ŷl )
of the slow measurement on a zero order hold. This
has to be done beyond the sampling point of the
next measurement, as it is again subject to the delay.
At the moment when the new measurement becomes
available, the former errors between the corresponding
sampling point and the current time in the horizon
have to be replaced by the new value of the error. The
fixed structure MMHE formulation is given by

min
ξ̂,ϕ̂

Ψk = ξ̂T
k−N−1|kP

−1
k−N|k−1ξ̂k−N−1|k

+
k−1

∑
j=k−N

ξ̂T
j|kQ

−1ξ̂ j|k (12)

+
k

∑
j=k−N

ϕ̂T
j|kR

−1
fixedϕ̂ j|k

s.t. x̂k−N|k = x̂k−N|k−1 + ξ̂k−N−1|k

x̂ j+1|k = F(x̂ j|k,u j)+ ξ̂ j|k

j = k−N, . . . ,k−1

ϕ̂ j|k =

(

yF
j −HF(x̂ j|k)

yS
l −HS(x̂l |k̄)

)

j = k−N, . . . ,k

l =



















TS(⌊ j/TS⌋−1)

∀( j ≥ TS⌊k/TS⌋)

∧(k < TS⌊k/TS⌋+ td)

TS⌊ j/TS⌋ otherwise

k̄ =

{

k ∀ l ≤ k−N

l +N otherwise

ξmin ≤ ξ̂ j−1|k ≤ ξmax

ϕmin ≤ ϕ̂ j|k ≤ ϕmax

xmin ≤ x̂ j|k ≤ xmax

k̄ is necessary ifl lies outside the horizon. The pre-
diction of P remains the same as if all measurements
were always available.

x̂i+1|k−1 = F(x̂i|k−1,ui) (13)

Pi+1|k−1 = A i|k−1

(

Pi|k−2−Pi|k−2HT
i|k−1

(

H i|k−1Pi|k−2HT
i|k−1 +Rfixed

)−1

H i|k−1Pi|k−2
)

AT
i|k−1 +Q (14)
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Fig. 3. Linear MMHE for the leakage in a three tank
system: Cautious tuning,TS = 10, td = 0s.
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Fig. 4. MMHE estimate of the concentration of A and the temperature in the CSTR example – noisy measurements

with H i|k−1 =
∂h(x)

∂x

∣

∣

∣

∣

x̂i|k−1

A i|k−1 =
∂f(x)

∂x

∣

∣

∣

∣

x̂i|k−1

and i = k−N−1

The above equations are written for a regular slow
measurement. Implementation in a computer system
does not require this regularity.

The purpose of putting the unavailable measurement
on zero order hold is to spread the required amplifica-
tion of the estimator along the frequent measurements.
It should be guaranteed that the estimator does not
interpret this error as a new error but uses the required
fractional amplification. One is inclined to think this
can be achieved by fixing the slow measurement part
of ϕ̂ when no fast measurement is available. The for-
mulation in (12) already does this asyS

l −HS(x̂l |k) is
constant between the differentl . Therefore, the whole
ξ̂ j|k depends on the spread amplification of the slow
measurement and the current frequent measurement.

In order to be comparable with the variable structure,
the measurement covarianceRS of the slow measure-
ments has to be adjusted.

If νi aren zero mean estimators (e.g. measurements)
and varianceσ2

i , the optimal combination of these
estimatorsν has the variance

σ2 =
∏n

i σ2
i

∑n
i ∏n

j 6=i σ2
j

. (15)

If σi are the same, i.e.̄σ2 = σ2
1 = · · · = σ2

n,

σ2 =
σ̄2

n
. (16)

If for the fixed structure MMHE we assume one es-
timated error is not taken at one point with variance
RS

var but at a number ofTS equally important points,
we can say

(

RF 0
0 TSRS

var

)

=

(

RF 0
0 RS

fixed

)

. (17)

Using this relationship, equivalent tuning of the two
structures can be obtained as was used in Fig-
ures 3 and 4.

4. SIMULATIVE EXAMPLE

In order to compare the performance of the different
approaches developed in this paper to the usually
applied EKF, the different methods are applied to a
nonlinear example process taken from the literature.

Example 1.(Soroush and Kravaris (1992)). A CSTR
wherein the irreversible reactions



A
k1−→U1 r1

A = −k1C
3
A

A
k2−→U2 r1

A = −k2C
1
2
A

A
kd−→UD r1

A = −kdCA

take place. The following observable differential equa-
tions are considered:

dCA

dt
= RA(CA,T)+

V̇
VR

(CA,in −CA)

dT
dt

=
RH

ρcp
+

V̇
VR

(Tin −T)+
Q̇

ρcpVR

where RA(CA,T) = −k1(T)C3
A−k2(T)C

1
2
A −kd(T)CA

k1(T) = k0
1e−

EA,1
RT

k2(T) = k0
2e−

EA,2
RT

kd(T) = k0
de−

EA,d
RT

The inputs are(CA,in,Tin,Q)T , however,CA,in is the
only manipulated variable. FoṙQ = −1.030kW this
CSTR exhibits three steady states. The operating con-
ditions, steady states and physical properties are used
as in Soroush and Kravaris (1992).

In Figure 4 the estimators are given noisy measure-
ments. Only the MMHE receives multirate measure-
ments with measurements delays, the measurements
given to the EKF are single rate measurements without
delay. The fixed structure MMHE converges onto the
real value smoothly. Despite the EKF looking better
than the fixed structure MMHE, the MMHE reaches
zero error at around 400 s whereas the EKF with one
measurement (only temperature) needs up until 650 s.
The advantage of the fixed structure MMHE is espe-
cially obvious in the noisy case. The noise is strongly
amplified by the variable structure MMHE, whereas
the fixed structure MMHE, just as the EKF, remains
smooth. It has to be noted that the fixed structure
MMHE performs similar to an EKF which at every
sampling point takes into account both the tempera-
ture and the concentration measurement.

5. CONCLUSION

In this paper we investigate the use of multirate de-
layed measurements in state estimation schemes. We
consider the Moving Horizon Estimator the best start-
ing point for the combination of the different classes
of measurements into one state estimation scheme and
extend the MHE to a Multirate MHE, which can han-
dle the different measurement. We discuss a variable
and a fixed structure and recommend the fixed struc-
ture, as it distributes the amplification of the error be-
tween the predicted and the measured slow measure-
ments over several fast measurements between two
slow samples and results in a smoother decay of the
error. A simulative example of a CSTR underlines the
proposed approach.
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