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Abstract: A two-degree-of-freedom Smith control scheme is proposed for improved
disturbance rejection for stable delay processes. The resulting set-point and distur-
bance responses can be tuned by two controllers separately. A novel disturbance
controller design is presented with easy tuning and greatly improved performance.
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1. INTRODUCTION

In process control, the Smith predictor (Smith,
1959) is a well known and very effective dead-
time compensator. One major concern with the
normal Smith control is that its disturbance rejec-
tion performance is limited due to its one-degree-
of-freedom nature. In order to cater to distur-
bance rejection and robustness as well, a double-
controller scheme is presented by Tian and Gao
(1998) for stable first order processes with dom-
inant delay. But the improvement of disturbance
rejection is not significant, and its performance de-
teriorates when the process time delay is relatively
small. Recently, several ‘modified Smith predictor’
control schemes have been proposed (Chien et
al., 2002; Kaya, 2003; Majhi and Atherton, 2000)
to extend applicability of the Smith control to
unstable processes. They handle integral or first-
order unstable plants by employment of more con-
trollers, and can be applied to stable processes as
well through scheme simplification. It is however
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noted that their characteristic equations are all
delay dependent, which is in contrast to delay-
free one enjoyed by the normal Smith control
and which keeps the stabilization problem as a
complicate task. Also, they paid little attention
to disturbance rejection. It is undoubtable that
disturbance rejection is most important in process
control and good solutions have been sought for
long time.

In this paper, a two-degree-of-freedom Smith pre-
dictor control scheme is proposed for improved
disturbance rejection. Its nominal stabilization is
of delay free. The resulting set-point response
remains the same as in the normal Smith scheme.
But the disturbance response can be tuned by
one additional controller separately with no effects
on the set-point response. Furthermore, a novel
method is presented to design this disturbance
controller easily and yield substantial control per-
formance improvement.

The rest of the paper is organized as follows.
In Section 2, the two-degree-of-freedom control
scheme is presented. Stability analysis is given in
Section 3. Controller designs are detailed for first-



order plus dead time (FOPDT) and second-order
plus dead time (SOPDT) processes in Section 4
to demonstrate our methods. In Section 5, three
examples are provided. And finally, Section 6
concludes this paper.

2. THE PROPOSED SCHEME

In this paper, we consider stable delay processes.
Our goal is to devise some new control scheme
which can keep nominal delay-free stabilization
of the closed-loop system like that in the normal
Smith control, yet, provide some additional means
to improve disturbance rejection, and hopefully
one can tune the set-point and disturbance re-
sponses separately and easily. After many trials,
we come up with the two-degree-of-freedom Smith
control scheme as depicted in Figure 1, which
can fulfill all the above requirements. In Figure 1,
G(s) = G0(s)e−Ls and Ĝ(s) = Ĝ0(s)e−L̂s are the
stable process and its model respectively. Suppose
that the model matches the plant dynamics per-
fectly, i.e., Ĝ0 = G0 and L̂ = L. It follows that the
closed-loop transfer function from the set-point to
the output is given by

Hr =
G0C1

1 + G0C1
e−Ls. (1)

For the disturbance path, it can be shown that
the transfer function is

Hd =
1 + G0C1 −G0C1C2e

−Ls

1 + G0C1
G0e

−Ls, (2)

which shares the same delay-free denominator as
in Hr. To see the difference and benefits of the
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Fig. 1. Block diagram of the proposed scheme

new scheme. Letting C2 = 1 reduces the scheme
to the normal Smith system which has the same
set-point transfer function as in (1) but a different
disturbance transfer function as

Hd1 =
1 + G0C1 −G0C1e

−Ls

1 + G0C1
G0e

−Ls.

Obviously, with C1 designed for closed-loop stabil-
ity and the set-point response, the normal Smith
scheme simply does not have any freedom to ma-
nipulate the disturbance response. Owing to great

importance of disturbance rejection in process
control industry, it is definitely desirable to have
a means to improve it. In the new scheme, C2

appears in the numerator of Hd, and thus can be
utilized to reduce or minimize Hd. It is also noted
that C2 is not in the set-point transfer function
(1). Hence, C1 and C2 can be tuned separately as
follows. C1 is designed to have the desired stability
and set-point response. This is a standard task
and there are many solutions already. Our focus
here is on C2, that is, design it to achieve best
disturbance rejection.

In view of (2), intuitively, one might attempt to
determine C2 by frequency response fitting, i.e.,
by minimizing

|Hd| =
∣∣∣∣1−

G0C1e
−jωL

1 + G0C1
C2

∣∣∣∣
∣∣G0e

−Ls
∣∣ = |1−HrC2| |G0|

for some working frequency range, ω ≤ ω ≤ ω̄,
so that the disturbance response is attenuated.
Such optimization falls into the model matching
category and sounds reasonable. However, it fails
to produce ideal performance, as will be demon-
strated in Example 2 later. This is because the
optimization tends to get C2 as C2 = 1/Hr over
[ω, ω̄]. The resulting C2 would mimic the be-
havior of 1/Hr that contains pure time leading
ejωL with counter-clockwise Nyquist curve, and
would exhibit large magnitude for ω > ω̄. This
increases the corresponding |Hd|, and may even
make the scheme more susceptible to unmodelled
high frequency dynamics or uncertainties.

In order to attain better disturbance rejection in
face of the delay term in the numerator of Hd, a
novel method is proposed as follows. For a given
type disturbance, say D(s), it follows from (2)
that the disturbance response is

Yd =
1 + G0C1 −G0C1C2e

−Ls

1 + G0C1
G0e

−LsD

=Yda − Ydb, (3)

where
Yda = G0De−Ls (4)

is fixed and

Ydb =
G0G0C1C2

1 + G0C1
De−2Ls (5)

is manipulatable by C2. Suppose that the distur-
bance occurs at t = 0. Then non-zero responses
in yda(t) and ydb(t) come in at t = L and t = 2L,
respectively. Obviously, the disturbance response
during t = L to t = 2L is solely from yda(t)
and fixed. Any effort to change it during this
time period is useless but causes the problem on
controller design. The best achievable disturbance
rejection is to zero the disturbance response from
t = 2L onwards:

yd(t) = yda − ydb =
{

yda(t), 0 < t < 2L
0, t ≥ 2L



which requires the compensating response ydb(t)
to be

ydb(t) =
{

0, t < 2L
yda(t), t ≥ 2L

= yda(t)1(t− 2L), (6)

as displayed in Figure 2. We now derive an

t

y da

t

y db

t

y d

                          L                           2L

                          L                           2L

                          L                           2L

Fig. 2. Illustration of desired disturbance rejection

analytical solution for C2(s) to meet (6). In view
of (4), Yda can be expressed using the partial
fraction expansion as, say,

Yda(s) = G0De−Ls =

(
α0

s
+

∑

i

αi

s + βi

)
e−Ls,

and its time domain form is

yda(t) =

[
α0 +

∑

i

αie
−βi(t−L)

]
1(t− L).

It follows that

yda(t)1(t− 2L) =

[
α0 +

∑

i

αie
−βi(t−L)

]
1(t− 2L)

=

[
α0 +

∑

i

αie
−βiLe−βi(t−2L)

]
1(t− 2L)

, ŷda(t− 2L)1(t− 2L), (7)

where

ŷda(t) = α0 +
∑

i

αie
−βiLe−βit,

with

Ŷda(s) =
α0

s
+

∑

i

αie
−βiL

s + βi
.

Laplace transform of (6) with help of (5) and (7)
gives

G0G0C1C2

1 + G0C1
De−2Ls = Ŷda(s)e−2Ls,

and its solution is

C∗2 =
Ŷda(s)(1 + G0C1)

G0G0C1D
. (8)

Since C∗2 is improper in general, a low-pass filter
should be added for practical implementation so
that the actual C2 is given by

C2 =
1

(τs + 1)n

Ŷd1(s)(1 + G0C1)
G0G0C1D

. (9)

Detailed controller design will be provided for
several typical industrial processes in Section 4
after the stability analysis section.

Before concluding this section, we would high-
light novelty and advantage of our new scheme
over the standard two-degree-of-freedom control
scheme (either single-loop based or Smith predic-
tor based) where a prefilter is added between the
reference input and the negative feedback. In the
standard two-degree-of-freedom control scheme,
obviously, the prefilter does not affect the distur-
bance response and could only be utilized to tune
the set-point response. Then, this leaves its pri-
mary controller responsible for both closed-loop
stabilization and disturbance response, and thus
limits disturbance rejection performance. On the
other hand, in our scheme, C2 deals solely with the
disturbance. It is easier to design and superior in
disturbance rejection performance. In the extreme
case where the process is bi-proper, C2 may elim-
inate the disturbance response completely from
t = 2L, which is impossible for the standard two-
degree-of-freedom control scheme and any other
schemes where the controller taking care of dis-
turbance rejection also needs to cope with closed-
loop stability and/or pole placement.

As for the system stability, it could be shown
(Wang et al., 1999) that the system is internally
stable if and only if C1 stabilizes G0 and C2 is
stable. As for robust stability analysis, let the
total uncertainty be given by

∆G(s) =

∣∣∣∣∣
G(s)− Ĝ(s)

Ĝ(s)

∣∣∣∣∣ . (10)

Assume nominal stability. Then by the small gain
theorem, the closed-loop system is robustly stable
if and only if

∣∣∣∣
C1C2

1 + C1Ĝ0

Ĝ∆G

∣∣∣∣
∞

< 1. (11)

By invoking (1) and (9), (11) reduces to
∣∣∣∣

1
Hr(jω)C∗2 (jω)

∣∣∣∣ (τ2ω2 + 1)n/2 > |∆G|, ∀ω > 0.

(12)

It can been seen from (9) and (12) that a trade-off
is to be made by C2, or tuning of the parameter τ :
a decrease in τ will improve the disturbance rejec-
tion performance but reduce the robust stability,
and vise versa.

3. CONTROLLER DESIGN

It follows from the preceding sections that in our
scheme, C1 is designed to have stable closed-loop



and good set-point response, and C2 has to be
stable and meet (9). It is noted that most typical
industrial processes of interests could be approxi-
mated by FOPDT or SOPDT ones. Detailed con-
troller design will be carried out for each case and
closed-form formulas for controller parameters are
given as follows for easy reference.

FOPDT Processes Consider the following sta-
ble FOPDT process:

G(s) = G0(s)e−Ls =
k0

T0s + 1
e−Ls,

where all coefficients are positive. The closed-loop
transfer function for set-point tracking is chosen
to be

Hr =
k0C1

T0s + 1 + k0C1
e−Ls =

1
Trs + 1

e−Ls,

where Tr is the desired closed-loop time constant
and Tr ≥ T0 is recommended. This gives rise to

C1 =
T0s + 1
k0Trs

. (13)

Then the corresponding closed-loop transfer func-
tion from disturbance is

Hd =
k0

T0s + 1
e−Ls − k0C2

(Trs + 1)(T0s + 1)
e−2Ls.

(14)
Consider the most typical case of step distur-
bance: D(s) = kD/s. It follows from definitions
in Section 2 that

yda(t) = kDk0[1− e−(t−L)/T0 ]1(t− L),

ŷda(t) = kDk0[1− e−L/T0e−t/T0 ],

Ŷda(s) = kDk0

(
1
s
− e−L/T0

s + 1/T0

)
,

and

C∗2 = (Trs + 1)[T0(1− e−L/T0)s + 1].

Obviously, n = 2 is needed to implement C∗2 as

C2 =
(Trs + 1)[T0(1− e−L/T0)s + 1]

(τs + 1)2
. (15)

A large τ will increase the system robustness, and
a small one will yield better disturbance rejection.
The recommended range for τ is τ = 0.2Tr ∼ Tr.

SOPDT Processes with real poles Consider
the following stable SOPDT process:

G(s) = G0(s)e−Ls =
k0

(T1s + 1)(T2s + 1)
e−Ls,

where all coefficients are positive. Choose the
desired set-point transfer function as

Hr =
ω2

n

s2 + 2ξnωns + ω2
n

e−Ls,

and C1 is given by

C1 =
ω2

n

k0

(T1s + 1)(T2s + 1)
(s + 2ξnωn)s

. (16)

Still for step type disturbance D(s) = kD/s, it
follows that

Yda(s) = kDk0

(
1
s
− T1/(T1 − T2)

s + 1/T1
+

T2/(T1 − T2)
s + 1/T2

)
,

ŷda(t) = kDk0

(
1− T1e

−L/T1e−t/T1

T1 − T2
+

T2e
−L/T2e−t/T2

T1 − T2

)
,

Ŷda(s) = kDk0

(
1
s
− a1T1

T1s + 1
+

a2T2

T2s + 1

)
,

where

a1 =
T1

T1 − T2
e−L/T1 , a2 =

T2

T1 − T2
e−L/T2 .

Then the ideal C∗2 is derived from (8) as

C∗2 =
1

ω2
n

[(1− a1 + a2)T1T2s
2 + (T1 + T2 − a1T1

+ a2T2)s + 1][s2 + 2ωnξns + ω2
n],

and implemented by

C2 =
C∗2

(τs + 1)4
, (17)

with τ = 0.1/ωn ∼ 1/ωn recommended.

SOPDT Processes with complex poles Con-
sider the following stable SOPDT process:

G(s) = G0(s)e−Ls =
k0

s2 + 2ξ0ω0s + ω2
0

e−Ls,

where all coefficients are positive and 0 < ξ0 < 1.
Choose the desired set-point transfer function as

Hr =
ω2

n

s2 + 2ξnωns + ω2
n

e−Ls,

C1 is given by

C1 =
ω2

n

k0

s2 + 2ξ0ω0s + ω2
0

(s + 2ξnωn)s
. (18)

For step disturbance D(s) = kD/s, it follows that

ŷda(t) =
kDk0

ω2
0

[
1− e−α(t+L)

]

{
cos [β(t + L)] +

α

β
sin [β(t + L)]

}
,

Ŷda(s) =
kDk0

ω2
0

(
1
s
− b1s + b2

s2 + 2ξ0ω0s + ω2
0

)
,

with

α = ω0ξ0, β = ω0

√
1− ξ2

0 ,

b1 = e−αL[cos(βL) +
α

β
sin(βL)],

b2 = βe−αL[
α

β
cos(βL)− sin(βL)].

The C∗2 is then derived from (8) as

C∗2 =
1

ω2
0ω2

n

[s2 + 2ωnξns + ω2
n]

[(1− b1)s2 + (2α− b1α− b2)s + ω2
0 ],

and implemented by



C2 =
C∗2

(τs + 1)4
, (19)

with τ = 0.1/ωn ∼ 1/ωn recommended.

4. EXAMPLES

In this section, we demonstrate our designs in
Section 4 by three examples, one for each case.
The set-point input and load disturbance are
both step signals with magnitude of 1 and 0.5,
respectively, throughout the Examples.

Example 1: Consider an stable FOPDT
process with dominant delay:

G(s) =
1

s + 1
e−3s.

The controller parameters of the double-controller
Smith scheme from Tian and Gao (1998) are
Gc1 = 1 + 1/s and Gc2 = 0.667 + 0.222/s. Choose
Tr = T0 = 1 to achieve the same set-point
response as Tian’s. For τ = 0.4T0 = 0.4, it follows
from (13) and (15) that

C1 = 1 +
1
s
,

and

C2 =
0.9502s2 + 1.95s + 1

(0.4s + 1)2
.

The responses from both schemes are compared
in Figure 3, and the performance improvement
of the proposed design is clear. For better com-
prehension, the curves for yda, ydb and the error
yd = yda−ydb are given in Figure 4. It verifies that
the proposed C2 results in a ydb which approaches
yda after t ≥ 2L, and improves the disturbance
response significantly.
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Fig. 3. Step responses of Example 1
(—— Proposed; · · · · Tian′s)
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Fig. 4. Illustration of yda, ydb and yd for Example
1 (—— yda; · · · · ydb; - - - yd)

Example 2: Consider an stable SOPDT
process with distinct real poles:

G(s) =
2

(10s + 1)(2s + 1)
e−3s.

By choosing ωn = 0.2, ξn = 1 and τ = 0.15/ωn =
0.75, it follows from (16) and (17) that

C1 =
s2 + 0.6s + 0.05

2.5s2 + s
,

and

C2 =
64.88s4 + 97.24s3 + 56.11s2 + 12.85s + 1

(0.75s + 1)4
.

The PI-PD Smith scheme from Kaya (2003) is
adopted for comparison, whose controller para-
meters are calculated as Gc1 = 0.4 + 0.04/s and
Gc2 = −0.1 − s to provide the same set-point
response. The model match design as described in
Section 2 is also investigated, and the second order
controller C2mm is derived (Wang et al., 2003) as

C2mm =
50.11s2 + 4.044s + 1

(0.5s + 1)2
.

The responses from all three schemes are plot-
ted in Figure 5, the proposed scheme provides
best disturbance rejection, and the model match
design’s performance is also better than Kaya’s
design. As for the robust performance, suppose
±20% gain change or ±10% time delay change.
We plot (12) in Figure 6, which indicates robust
stability. And the corresponding time responses
are provided in Figures 7 and 8.

Example 3: Consider an oscillating stable
SOPDT process with ξ0 = 0.6 and ω0 = 0.5:

G(s) =
0.3

s2 + 0.6s + 0.25
e−3s.

By choosing ωn = ω0 = 0.5, ξn = 1 and τ =
0.2/ω0 = 0.4, it follows from (18) and (19) that

C1 =
0.83s2 + 0.5s + 0.21

s2 + s
,

and

C2 =
5.158s4 + 12.19s3 + 12.32s2 + 5.758s + 1

(0.4s + 1)4
.

The proposed design and the normal Smith pre-
dictor are compared in Figure 9, and the distur-
bance response improvement is obvious. In view of



0 50 100 150
0

0.2

0.4

0.6

0.8

1

t

y

(a) Output

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

u

(b) Input

Fig. 5. Step responses of Example 2
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Fig. 7. Responses in case of ±20% gain changes of
Example 2

(∆k = 20%: —— Proposed, · · · · Kaya′s;
∆k = −20%: - - - Proposed, - · - Kaya′s)

these three examples, the proposed method yield
much better disturbance rejection, owing to the
additional one more degree-of-freedom provided
by C2.

5. CONCLUSION

Due to great importance of disturbance rejec-
tion, a new control scheme, two-degree-of-freedom
Smith control, is proposed for better disturbance
rejection for stable delay processes. This scheme
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Fig. 8. Responses in case of ±10% time delay
changes of Example 2

(∆L = 10%: —— Proposed, · · · · Kaya′s;
∆L = −10%: - - - Proposed, - · - Kaya′s)
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Fig. 9. Step responses of Example 3
(—— Proposed; · · · · Normal Smith)

has an additional degree-of-freedom to manipulate
disturbance response. It keeps nominal character-
istic equation delay-free, and allows separate and
easy design of disturbance controller with superior
disturbance rejection, while the set-point response
remains the same as in the normal Smith system.
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