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Abstract. The paper addresses the problem of autonomous underwater vehicle
(AUV) control in the absence of full state information. An application is made to
the control of a prototype AUV in the vertical plane. The methodology adopted for
controller design is nonlinear gain scheduling control, whereby a set of linear, dynamic
reduced order output feedback controllers are designed and scheduled on the vehicle’s
forward speed. The paper summarizes the basic controller design steps, describes a
technique for practical implementation of the nonlinear control systems derived, and
presents experimental results obtained with the INFANTE AUV during tests at sea.
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1. INTRODUCTION

This paper describes a solution to the problem of au-
tonomous underwater vehicle (AUV) control in the ver-
tical plane, in the absence of full state information. An
application is made to the control of the prototype IN-
FANTE AUV, built and operated by the Instituto Su-
perior Técnico of Lisbon, Portugal.

The paper starts by introducing a nonlinear dynamic
model of the INFANTE AUV shown in Fig. 1. This is
followed by control system design for precise maneu-
vering in the vertical plane. The technique elected for
controller design is gain scheduling (Rugh et al., 2000).
Using this approach, a set of linear controllers is first
derived for a finite number of linearized models of the
plant at selected operating points. The resulting con-
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trollers are then interpolated on the vehicle’s forward
speed.

For linear control systems design, the paper exploits
the use of reduced order feedback (ROF) techniques,
which lead naturally to dynamic output feedback con-
trol laws with a very simple structure. In fact, the re-
sulting controllers exhibit only the dynamics introduced
by appended integrators (aimed at reducing steady state
tracking errors to zero) as well as extra dynamics that
act as shaping filters to limit the actuation bandwidth.
The importance of output feedback control strategies
cannot be overemphasized: in practice, it is often im-
possible, difficult, or too expensive to measure the full
state vector of a given plant. This motivates the devel-
opment of controllers that rely on output variables only,
effectively increasing the simplicity and thus the reli-
ability of the control laws adopted. In the case of the
INFANTE AUV, for example, it is difficult to measure
the angle of sideslip and the angle of attack in the hor-
izontal and vertical planes, respectively. However, it is
crucial to achieve stabilization and high vehicle perfor-



mance in both planes. Thus the use of output feedback
control to meet tight stability and performance criteria.

From a theoretical point of view, the reduced order out-
put feedback control can be converted into a static out-
put feedback problem for a related augmented system
(Mäkilä, 1985). However, in spite of the availability of
necessary and sufficient conditions for plant stabilizabil-
ity by static output feedback,”no algorithm is currently
available which guarantees to compute a stabilizing gain
or determine if such a gain exists” (Iawasaki et al., 1994).
Much of the work in this area is well rooted in the theory
of Linear Matrix Inequalities (LMIs), which are steadily
becoming the tool par excellence for advanced control
system design. In fact, many control problems can be
cast as LMI problems that can be solved efficiently us-
ing convex programming techniques. However, difficul-
ties arise when designing (sub-optimal) static output
feedback controllers because the latter problem can only
be cast in terms of an equivalent one that involves Bilin-
ear Matrix Inequalities (BMIs) (Grigoriadis et al., 1996).
The resulting problem is no longer convex, and no ef-
ficient numerical procedures exist for its solution as in
the case of LMIs. However, the bilinear characteristics
of the problem can still be exploited to yield an itera-
tive procedure whereby two sets of LMIs are solved se-
quentially. This is the approach pursued in this paper,
where the results described in (El Ghaoui et al., 1997)
are used to develop a simple algorithm to iteratively
search for the solution to (sub-optimal) static output
feedback (SOF) control problems. Indirectly, the algo-
rithm yields also a computational procedure to solve
the ROF problem studied in this paper by exploiting
the relationship between ROF and SOF control design
techniques described in (Mäkilä, 1985). Although the
algorithm performs a local search with no guarantees
of global convergence, it exhibits excellent performance
in the current application. The interested reader is re-
ferred to (Leibfritz, 2001) for a lucid discussion of differ-
ent techniques for computational design of static output
feedback controllers.

In the work reported here, a finite number of ROF con-
trollers were developed for linearized plant models ob-
tained at different operating conditions determined by
the vehicle’s forward speed. The controller parameters
were then interpolated and scheduled on speed. The final
implementation of the resulting non-linear gain sched-
uled controller was done using the D-methodology de-
scribed in (Kaminer et al., 1995) that guarantees a fun-
damental linearization property and avoids the need to
feedforward the values of the state variables and inputs
at trimming.

The paper is organized as follows. Section 2 introduces
a nonlinear model for the vertical plane dynamics of
the INFANTE AUV. Section 3 details the techniques
that were used for depth control system design and im-
plementation. Finally, Section 4 contains experimental
results obtained during sea trials of the vehicle in the
Azores, Portugal.

2. VEHICLE DYNAMICS

This section describes the dynamic model of the IN-
FANTE AUV in the vertical plane. See (Silvestre, 2000)
for a complete study of the AUV dynamics. The vehicle
is 4.5 m long, 1.1 m wide and 0.6 m high. It is equipped
with two main thrusters (propellers and nozzles) for
cruising and fully moving surfaces (rudders, bow planes
and stern planes) for vehicle steering and diving in the
horizontal and vertical planes, respectively.

Fig. 1. The INFANTE Vehicle

The notation used and the structure of the vehicle model
are standard (Silvestre, 2000; Fossen, 1994). The vari-
ables u and w denote surge and heave speeds, while θ,
q, and z denote pitch, pitch rate, and depth, respec-
tively. The symbols δb, and δs represent the bow and
stern plane deflections, respectively. With this notation,
and neglecting the roll stable motion, the dynamics of
the AUV in the vertical plane can be written in compact
form as
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where equations (1) and (3) describe the heave and pitch
motion respectively Z(.) and M(.) are hydrodynamic de-
rivative terms and zCB represents the metacentric dis-
tance. See (Silvestre, 2000) for numerical values of the
hydrodynamic parameters. The variables m, L, W , B,
and Iy are the vehicle’s mass, length, weight, buoyancy,
and moment of inertia about the y axis, respectively and
ρ is the density of the water.

3. CONTROL SYSTEM DESIGN AND
IMPLEMENTATION

This section focuses on the design of a depth control
system for the AUV INFANTE, based on the dynamic
model presented in Section 2. The methodology adopted
for controller design is nonlinear gain-scheduled con-
trol, whereby the design of a controller to achieve stabi-
lization and adequate performance of a given nonlinear
plant (system to be controlled) involves the following
steps (Rugh et al., 2000):

i) Linearizing the plant about a finite number of rep-
resentative operating points,

ii) Designing linear controllers for the plant lineariza-
tions at each operating point,

iii) Interpolating the parameters of the linear controllers
of Step ii) to achieve adequate performance of the
linearized closed-loop systems at all points where
the plant is expected to operate. The interpolation
is performed according to an external scheduling
variable (vehicle’s forward speed), and the result-
ing family of linear controllers is referred to as a
gain scheduled controller,

iv) Implementing the gain scheduled controller on the
original nonlinear plant.

In what follows a brief summary is given of the work
carried out at each of the design steps, leading to the
development of a controller for the vehicle that is sched-
uled on forward speed. For the sake of brevity, the linear
design methodology is illustrated for the case of a single
operating condition that corresponds to a forward speed
of 2 m/s.

Linearization. Open-Loop System Analysis The model
for the vertical plane was linearized about the equilib-
rium point determined by (w0, q0, z0, θ0)T = (0, 0, 0, 0)T

and u0 = (δb, δs)T =(0, 0)T .

The resulting linearized model eigenvalues are presented
in Fig. 2. The model exhibits an eigenvalue at zero (cor-
responding to a pure integrator in the depth coordinate
z) and three stable eigenvalues that link together the
variables w, q, and θ. Notice the overall trend in the
plot, where the two complex eigenvalues at low speed
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Fig. 2. Linearized model eigenvalues as functions of the
forward speed u0

degenerate into two real eigenvalues at higher speed. In
the input matrix, the bow and stern plane deflections δb

and δs affect directly the state variables w and q.

3.1 Design Specifications

The linear depth controllers were required to meet the
following design specifications:

Zero Steady State Error. Achieve zero steady
state values for the error variable in response to
the input commands zcmd.
Bandwidth Requirements. The input-output
command response bandwidth for the depth com-
mand channel should be on the order of 0.1 rad/s;
the control loop bandwidth for the bow and stern
planes channels should not exceed 5 rad/s; these
figures were selected to ensure that the actuators
would not be driven beyond their normal actuation
bandwidth.
Closed Loop Damping and Stability Mar-
gins. The closed loop eigenvalues should have a
damping ratio of a least 0.7. It was also required
that the steady state deflection of the bow planes
in response to a step input command in depth be
δb = 0.

3.2 Linear Control System Design

The methodology selected for linear control system de-
sign was reduced order output feedback with an H∞
criterion (Grigoriadis et al., 1996). This method rests
on a firm theoretical basis and leads naturally to an
interpretation of control design specifications in the fre-
quency domain. Furthermore, it provides clear guide-
lines for the design of controllers so as to achieve robust
performance in the presence of plant uncertainty.

The Reduced Order Output Feedback (ROF) control
problem can solved by converting it into a Static Output
Feedback (SOF) control problem, using a well-known
system augmentation technique. To that effect, consider
the original plant dynamics Σm = {Am, Bm, Cm} and



the appended dynamics Σk = {Ak = 0k, Bk = Ik, Ck =
Ik} of order k. Let uk ∈ Rk, and xk ∈ Rk, be the con-
trol input and state of the appended dynamics. It can be
shown (Mäkilä, 1985) that the ROF stabilization prob-
lem has a solution of order k if and only if the augmented
system

A =
[

Ak 0
0 Am

]
, B =

[
Bk 0
0 Bm

]
, C =

[
Ck 0
0 Cm

]

admits a static output-feedback stabilizing solution. The
remainder of this section focuses on the SOF problem.
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Fig. 3. Feedback interconnection

In what follows, the standard set-up and nomenclature
in (Zhou et al, 1995) is adopted, leading to the feedback
system represented in Fig. 3 with realization




ẋ(t) = Ax(t) + Bww(t) + Bu(t)
z(t) = Czx(t) +Dw(t) + Eu(t),
y(t) = Cx(t) + Fw(t)

u(t) = Ky(t), (5)

where x is the state vector. The symbol w denotes the
input vector of exogenous signals (including commands
and disturbances), z is the output vector of errors to be
reduced, y is the vector of measurements that are avail-
able for feedback, and u is the vector of actuator signals.
The generalized plant G consists of the augmented sys-
tem described before together with weights that shape
the exogenous and internal signals, see Section 3.3. Sup-
pose that the feedback system is well-posed, and let Tzw
denote the closed loop operator from w to z. The (sub-
optimal) H∞ SOF synthesis problem consists of find-
ing (if it exists) a static controller K that stabilizes the
closed loop system and makes the infinity norm ‖Tzw‖∞
of the operator Tzw smaller than a desired bound γ > 0.
The technique used for controller design is based on two
following standard results.

Result 1: The closed loop system with realization (4)
has all the eigenvalues in the semi-plane λ ∈ C : Re(λ) <
α if a real symmetric matrix X > 0 and a real matrix
K exist such that the closed loop Lyapunov inequality

X(A′ − αI) + XC′K′B′ + (A− αI)X + BKCX < 0 (6)

is satisfied.

Result 2: The H∞ norm of the operator Tzw is less
than a positive number γ, that is, ‖Tzw‖∞ < γ, if a real

symmetric matrix X > 0 and a real matrix K exist such
that the LMI.

[
X(A′ + C′K′B′) + (A+ BKC)X ∗ ∗

B′w −γI ∗
CzX + EKC D −γI

]
< 0 (7)

holds.

In the case of a square full rank matrix C the standard
transformation W = KCX converts the above nonlin-
ear LMIs into convex LMIs. However, in the case of
a noninvertible C matrix, the problem of determining
a sub-optimal SOF controller involves Bilinear Matrix
Inequalities (BLMIs). In this situation, the problem at
hand is no longer convex, thus making the task of find-
ing numerical solutions hard. It is important to point
out that given an arbitrary dynamic system, there are
no guarantees that a SOF controller exists that will sta-
bilize the system. Furthermore, even if the existence of
a stabilizing controller can be established, the noncon-
vex characteristics of the optimization problem are such
that no assurances can be given as to whether a numer-
ical procedure will converge to a solution. Therefore,
the following algorithms for the computation of a sub-
optimal H∞ SOF controller should only be adopted if
sound judging is applied to establish if a solution to the
(sub-optimal) H∞ SOF synthesis problem can indeed
be found.

The algorithms proposed can be briefly explained as fol-
lows: i) compute (if it exists) a SOF stabilizing controller
for the generalized plant G, and ii) use this controller as
a starting point to find an H∞ sub-optimal controller.
The first algorithm finds a stabilizing controller using
Result 1, starting with an arbitrary K of appropriate
dimensions.

Algorithm 1: SOF stabilizing controller

(1) For an arbitrary K find α such that
Re(λi(A− αI)) < 0, i = 1, ..., n.

(2) Fix K and solve LMI (6) (feasibility problem) with
respect to variable X.

(3) Fix X and solve the optimization problem of min-
imizing α subject to the LMI constraint (6) in the
variables α, and K.

(4) If α ≥ 0 go to step 1, else end.

The second algorithm computes a SOF H∞ sub-optimal
controller using Result 2, adopting the stabilizing static
controller K obtained before as a starting point.

Algorithm 2: SOF H∞ sub-optimal controller

(1) Fix K and solve the optimization problem of min-
imizing γ subject to the LMI constraint (7) in the
variables γ and X. Set γ1 = γ found.



(2) Fix X and solve the optimization problem of min-
imizing γ subject to the LMI constraint (7) in the
variables γ and K. Set γ2 = γ found.

(3) If |γ1 − γ2| > ζ go to step 1, else end.

In this design exercise ζ was set to 0.001.

Finally, the ROF controller is computed from the aug-
mented system and the gain K.

3.3 Synthesis Model and Controller Design

The first step in the controller design procedure is the
development of a synthesis model that can serve as an
interface between the designer and the H∞ controller
synthesis algorithm. Consider the feedback system shown
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Fig. 4. Synthesis model

in Fig. 4, where P is the augmented linearized model of
the AUV in the vertical plane, and K is a SOF con-
troller to be designed. The block G within the dashed
line is the synthesis model, which is derived from the
linear augmented model of the plant by appending the
depicted weights. In practice, the weights serve as tun-
ing ”knobs” which the designer can adjust to meet the
desired performance specifications.

In the figure, w1 represents the depth command zcmd

that must be tracked. The vector w2 includes the in-
put noise to each of the sensors that provide measure-
ments of depth, pitch, and pitch rate as well as distur-
bance inputs to the states w and q of the plant. The
signal u represents the augmented system control in-
puts that consist of uk and the bow and stern plane
deflections δb, and δs, respectively, whereas e = w1 −
x1 is the respective depth tracking error. The signal
x2 contains the remaining state variables that must be
penalized in the design process, that is, w, q, and θ.
The matrices Wi; i = 1, . . . , 4 correspond to dynamic
weights that penalize input, state, and tracking vari-

ables. Finally, the signal y consists of the variables xk,
q, θ, z, e/s and δb/s that are available for feedback.
To meet the depth step command response requirement
the weighting function W1 was chosen as W1 = 0.1.
The bow and stern planes deflection bandwidth con-
straint was achieved with W2 = diag(0.5, 0.5, 2(s/6 +
1)/(s/30+1), 2(s/6+1)/(s/30+1))]. The weight W3 was
set to diag(22.0, 0.1, 0.01, 0.05, 0.05) to meet the com-
mand bandwidth requirements, and W4 = 0.001I4. No-
tice the existence of a block of integrators I/s that op-
erates on the tracking errors e and on the entries of the
control input vector u that are selected by the matrix S.
Integral action on the errors is required to ensure zero
steady state in response to step commands in w1. Inte-
gral action on the entries of u introduces a ”washout” on
the particular control inputs selected. In the present case
the ”washout” ensures zero bow plane deflection at trim-
ming conditions. After several iterations the controller
order was set to k = 2 to accommodate the required
actuators bandwidth constraints.

3.4 Non-linear Controller Implementation

A set of controllers was designed for a finite number of
operating points, and their parameters interpolated ac-
cording to the vehicle’s forward speed (scheduling vari-
able). The implementation of the resulting non-linear
gain scheduled controller was done using the D-metho-
dology described in (Kaminer et al., 1995). This leads to
the general structure for the implementation of discrete-
time gain scheduled controllers depicted in Fig. 5, where
F (u) denotes the block that interpolates the reduced or-
der output feedback controllers obtained from the dis-
cretization of the linear controller designs in Section 3.2.
In the present case a sampling frequency of 10 Hz was
selected.
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Fig. 5. D Controller implementation with anti-windup
mechanism

4. TESTS AT SEA

To assess the performance of the controller developed,
a series of tests were carried out at sea. The vehicle
was operated at constant heading under the influence
of strong wave action. Figs. 6 through 10 show some
of the practical results obtained during depth changing
maneuvers, together with the results of simulations ob-
tained with a full nonlinear model of the vehicle. At the
beginning of this maneuver INFANTE was at surface;



20 seconds into the maneuver the depth controller was
switched on and a command to dive to 8 meters depth
was applied; this was followed by a command to dive to
10 meters at t = 150 seconds. In the figures, the dashed
and solid lines represent the experimental and the simu-
lation results, respectively. The vehicle’s forward speed
was kept approximately constant at 1.8 m/s.
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Fig. 6. Commanded and measured depth - simulated
and measured values
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Fig. 7. Pitch angle
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Fig. 9. Bow plane deflection under strong wave action

Figs. 6, 7 and 8 show commanded and measured depth,
pitch, and pitch rate activity, respectively. Figs. 9 and 10
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Fig. 10. Stern plane deflection under strong wave action

display the activity of the bow and stern planes respec-
tively. Notice the strong coupling between wave action
and control planes deflection near the surface, mainly
induced by pitch and pitch rate. Leaving aside the in-
fluence of the waves (which was not addressed explicitly
in the controller design phase), the figures reveal close
agreement between predicted and actual maneuvers.
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