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Abstract: Subspace-based system identification methods have been developed over the last
two decades. The available methods are algebraic in nature as they are not based on a suitable
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1. INTRODUCTION

There has been an increasing interest in subspace
identification algorithm over the last decade as pointed
out by the available contributions. The early contribu-
tions have been proposed in (Ho and Kalman, 1966),
(Zeiger and Mc Ewen, 1974) and (Kung, 1978).
The concept has been further developed in (Willems,
1986), (Moonen et al., 1989), (Verhaegen, 1994),
(Viberg, 1995), (Van Overschee and De Moor, 1995),
(Van Overschee and De Moor, 1996), (Jansson, 1997),
(Chui, 1997), (Bauer, 1998) and (Bauer, 2003).

Subspace methods have been mainly motivated by a
set of interesting properties: the simplicity, the intrin-
sic numerical robustness and their straightforward ap-
plication to multivariable systems. Of practical inter-
est, they provide an estimation of the model structure.

However the subspace identification methods of the
open literature lack of an appropriate identification
criterion as the widespread classical prediction error
methods (Ljung, 1999). Furthermore, the subspace
system identification consists in a set of a well estab-
lished methods which are not closely related in spite of
unifying theorems established in ((Van Overschee and
De Moor, 1995), (Van Overschee and De Moor, 1996),
(Jansson, 1997) and (Bauer, 1998).

The motivation of this paper is twofold. Firstly, one
proposes two classes of subspace methods based on

the well known prediction error identification criterion
and the output error identification criterion. Secondly,
one shows that some well known subspace identif-
ication methods can be interpreted as particular cases
of the two previous classes of methods.

Section 2 is devoted to the usual notations. The
proposed identification subspace approaches are pre-
sented and appropriately commented in section 3 and
section 4. Simulation results are given in section 5 and
some concluding remarks end the paper.

2. STATE SPACE MODELS

2.1 System and model

Consider a discrete-time linear time-invariant system
So which dynamical behavior can be described by the
following equations

So

{
xo(t+ 1) = Aoxo(t) +Bou(t) +Koe(t)

y(t) = Coxo(t) +Dou(t) + e(t)

where (Ao, Bo, Co, Do,Ko) is a system state realiza-
tion of dimension n. {u(t)} ∈ Rm, {y(t)} ∈ Rp

and {xo(t)} ∈ Rn respectively denote the known
system input sequence, the measurable system output
sequence and the system state sequence. {e(t)} ∈ Rp

represents the noise sequence and is an unobserved
sequence of independent random variables with zero



mean values and finite variances. The input and noise
sequences are assumed to be uncorrelated.

The aim of the subspace identification methods is to
estimate a modelM with the following structure

M

{
x(t+ 1) = Ax(t) +Bu(t) +Kỹ(t)

y(t) = Cx(t) +Du(t) + ỹ(t)
(1)

where (A,B,C,D,K) is a state realization of the
model corresponding to the state sequence {x(t)} ∈
Rn. ỹ(t) ∈ Rp is the prediction error defined as

ỹ(t) = y(t)− ŷ(t)

with ŷ(t) = Cx(t) +Du(t).

Using the forward shift operator formulation, one can
easily write (1) as follows

y(t) = G(q)u(t) +H(q)ỹ(t) (2)

with G(q) = C(qIn − A)−1B + D and H(q) =
C(qIn −A)−1K + Ip.

The model M is such that its matrix pair {A,C}
is assumed to be observable, and its matrix pair
{A, (B K)} is assumed to be controllable. The model
is supposed to be asymptotically stable, i.e. the eigen-
values of A are assumed to lie inside the unit circle,
and H(q) is supposed to be inversely asymptotically
stable, i.e. the eigenvalues of (A −KC) are assumed
to lie inside the unit circle.

2.2 Notations

Most subspace methods use notations introduced by
(Moonen et al., 1989). The output block Hankel ma-
trices are defined as

(
Yp

Yf

)
=




y(t−β) y(t−β+1) . . . y(t−β+j−1)

y(t−β+1) y(t−β+2) . . . y(t−β+j)

. . . . . . . . . . . .
y(t−1) y(t) . . . y(t+j−2)

y(t) y(t+1) . . . y(t+j−1)

y(t+1) y(t+2) . . . y(t+j)

. . . . . . . . . . . .
y(t+α−1) y(t+α) . . . y(t+α+j−2)




Yp is called the past output Hankel matrix while Yf is
called the future output Hankel matrix. Up, Uf , Ỹp and
Ỹf are defined in the same way. α is the observability
horizon and β is the controllability horizon while j is
the number of column on Hankel matrices and it will
be often assumed to be infinite. Notice that α, β and j
are user-defined index.

Let introduce Γα the extended (α > n) observabil-
ity matrix of the model and Hd

α a lower triangular
Toeplitz matrix containing the first α Markov param-
eters of G(q).

Γα =




C
CA
· · ·

CAα−1


 Hd

α =




D 0 · · · 0
CB D · · · 0
· · · · · · · · · 0

CAα−2B · · · CB D




Hs
α is defined in a similar way, substituting K for B

and Ip for D.

3. SUBSPACE PREDICTION ERROR METHODS

In this section one proposes a first class of sub-
space methods: the subspace prediction error methods.
Identification criterion and solution of the underlying
identification problem are first presented. An iterative
algorithm is then proposed.

3.1 Identification criterion

The widespread prediction error methods consist in
considering a model structure of the form (2). The key
idea in these methods is to compute a model such that
its prediction error sequence is as small as possible
(Ljung, 1999). There are several manners to qualify
what “small” should mean. Basically the size of the
prediction error is measured via the Frobenius norm
|.|F . The underlying identification problem is

(G(q),H(q))= ARG MIN



 lim
j→∞

1

j

j∑

t=1

|ỹ(t)|
2
F





(G(q),H(q))

(3)

It is worth noticing that the optimization problem (3)
is non-linear in the state realization (A,B,C,D,K).
Moreover the order n of the system is unknown and
the solution is by no means unique due to the infinite
number of basis in the state space. It turns out that this
problem can’t be straightforwardly solved.

However, it’s possible to reformulate the identification
problem (3) using Hankel matrices as follows

(A,B,C,D,K)= ARG MIN

{
lim
j→∞

1

αj

∣∣∣Ỹf
∣∣∣
2

F

}

(A,B,C,D,K)

(4)

with

Ỹf = (H
s
α)

−1(Yf − ΓαXt −Hd
αUf )

Xt =
(
x(t) x(t+ 1) . . . x(t+ j − 1)

)

Such an optimization problem is the corner stone of
the subspace prediction error approach we are con-
cerned by. Table 1 summarizes the similarity between
the proposed approach and the usual prediction error
approach. As in most subspace identification methods,
the considered problem (4) is break down into two
main steps:

(1) Estimation of the order n and of the extended
observability matrix Γα.

(2) Extraction of a state realization from the knowl-
edge of Γα or the recovered state matrix Xt.

In the next subsection one concentrates on the first
step. This step has given its name to the identification
method because it consists in analyzing the subspace
spanned by rows of Γα.



usual prediction error methods: subspace prediction error methods:
based on transfer function based on state space realization

model y(t) = G(q)u(t) +H(q)ỹ(t)

{
x(t+ 1) = Ax(t) +Bu(t) +Kỹ(t)

y(t) = Cx(t) +Du(t) + ỹ(t)

criterion
(G(q),H(q))= ARG MIN

{
limj→∞

1

j

∑
j

t=1

∣∣ỹ(t)
∣∣2
F

}

(G(q),H(q))

(A,B,C,D,K)= ARG MIN

{
limj→∞

1

αj

∣∣Ỹf
∣∣2
F

}

(A,B,C,D,K)

Table 1. Usual and subspace prediction error methods

3.2 Subspace estimation

Using the pseudolinear regression principe, the identif-
ication criterion (4) can be rewritten as follows

(A,B,C,D,K)= ARG SOL
{
limj→∞

1

j
Hs
αỸfZ

T=0
}

(A,B,C,D,K)

(5)

with Z =

(
Zp

Uf

)
and Zp =

(
Up

Yp

)
.

Due to hypothesis on input and noise sequences, prob-
lem (4) implies problem (5). Provided that the input
sequence is persistently exciting of order (α+ β) and
that j →∞ then application of (5) gives

lim
j→∞

1

j
Yf/

ZZ = ΓαXt/
ZZ +Hd

αUf

where ./Z = ZT (ZZT )−1 is the orthogonal pro-
jection operator. Notice that this projection could be
interpreted as an asymptotic rejection of the noise
Hankel matrix Ef on the future output Hankel matrix
Yf .

The following optimization problem allows to deter-
mine the model order n and the observability matrix
Γα

Γα= ARG MIN {|Yf/ZZ−ΓαXt/ZZ−Hd
αUf |F}

Γα
(6)

The next theorem aims at giving solution on Γα.

Theorem 1.

Consider the class of systems and models respectively
described by So and M. If the following assumptions
holds

(1) the matrix Ω, defined below, has rank (n+ αm)

Ω = lim
j→∞

1

j

(
Xt

Uf

)(
ZT
p UT

f

)

(2) the input sequence is persistently exciting of
order (α+ β) ;

(3) α ≥ n ;
(4) β ≥ n.

Then the model M which is solution of the problem
(4) is such that

(1) M = So ;
(2) The SVD of limj→∞ Yf/

Zp
Uf

is of the form

lim
j→∞

Yf/
Zp
Uf
=
(
U1 U2

)( S1 0
0 0

)(
V T
1

V T
2

)

with S1 ∈ Rn×n and where ./
Zp
Uf

is the oblique
projection operator defined as

./
Zp
Uf
= ZT (ZZT )−1

(
Iβ(p+m)

0αm×β(p+m)

)

(3) n is equal to the number of singular values dif-
ferent from zero ;

(4) Γα is given by

Γα = U1S
1/2
1 T

where T is a similarity transformation. ¤

Proof : See (Pouliquen and M’saad, 2004).

The rank condition (1) has been considered in (Jansson,
1997) where it is viewed as the critical relation for
consistency of subspace methods. It involves some
conditions on the choice of the index α and β, the
degree of persistence excitation and the the system
complexity. A wide discussion on how to practically
satisfy this condition can be found in (Jansson, 1997)
and (Chui, 1997). This rank condition is “generically”
satisfied if the input is persistently exciting enough
according to (Gustafsson, 2002).

If all assumptions of theorem 1 are satisfied, then
rank(Yf/

Zp
Uf
) = n. However, when j isn’t infinite, the

Hankel matrix Ef isn’t asymptotically rejected and
hence Yf/

Zp
Uf

is a full rank matrix. This means that
the solution on Γα proposed by theorem 1 is nothing
than an approximation. To improve this estimation a
rank condition on Γα can be incorporated into the
optimization problem (6) as follows:

Γα= ARG MIN {|Yf/ZZ−ΓαXt/ZZ−Hd
αUf |F}

Γα

rank(Γα)=n

(7)

A suboptimal solution consists in breaking down prob-
lem (7) in the following manner

Γα= ARG MIN

{∣∣∣Yf/ZpUfZp−ΓαXt/
Zp

Uf
Zp

∣∣∣
F

}

Γα

rank(Γα)=n

(8)

The optimal solution on Γα of problem (8) is given by

Γα = U1S
1/2
1 T

with

Yf/
Zp
Uf

Zp =
(
U1 U2

)( S1 0
0 0

)(
V T
1

V T
2

)

This corresponds to N4SID algorithm described in
(Van Overschee and De Moor, 1993) and (Van Over-
schee and De Moor, 1995).



method W1 W2

standard Iαp Iβ(p+m)

N4SID Iαp Zp

PO-MOESP Iαp ZpΠ⊥Uf

CVA
(
YfΠ

⊥
Uf

Y T
f

)−1/2
ZpΠ⊥Uf

IVM
(
YfΠ

⊥
Uf

Y T
f

)−1/2
(

ZpΠ⊥Uf
ZT
p

)(
ZpZT

p

)−1

Table 2. Some common subspace methods
as special cases of theorem 2

An optimal solution of problem (7) is obtained
with the PO-MOESP subspace method proposed in
(Verhaegen, 1994). It’s given by

Γα = U1S
1/2
1 T

with

Yf/
Zp
Uf

ZpΠ
⊥
Uf
=
(
U1 U2

)( S1 0
0 0

)(
V T
1

V T
2

)

where Π⊥
Uf

is defined from the orthogonal projection
operator as follows

Π⊥
Uf
= Ij − /UfUf

In the following, one proposes an unifying theorem
for the estimation of the order and the observability
matrix according to the prediction error identification
problem (4).

Theorem 2.

Consider the context of theorem 1. If W1 and W2

are two matrices such that W1 is no singular and
rank

(
Xt/

Zp
Uf

W2

)
= rank

(
Xt/

Zp
Uf

)
, then one has

(1) The SVD of limj→∞ W1Yf/
Zp
Uf

W2 is of the form

lim
j→∞

W1Yf/
Zp
Uf

W2 =
(
U1 U2

)( S1 0
0 0

)(
V T
1

V T
2

)

with S1 ∈ Rn×n ;
(2) n is equal to the number of singular values dif-

ferent from zero ;
(3) Γα is given by

Γα = (W1)
−1U1S

1/2
1 T

where T is a similarity transformation. ¤

This theorem follows from theorem 1 as it has been
proven in (Pouliquen and M’saad, 2004). Similar re-
sults have been presented in (Van Overschee and
De Moor, 1995), (Jansson, 1997) and (Bauer, 1998).
There are however several features that could be
pointed out.

• It’s based on an identification criterion similar
to the prediction error criterion used in classical
identification (Ljung, 1999).

• It includes unifying theorems presented in (Van
Overschee and De Moor, 1995), (Jansson, 1997)
and (Bauer, 1998).

?

Choice of α, β and j

Hankel data matrices

Choice of W1 and W2

SVD W1Yf/
Zp
Uf

W2

Estimation of n and Γα

Estimation of model matrices

?

?

?

?

W1=(Ĥs
α)
−1

¾

Fig. 1. Iterative subspace algorithm

• It includes some well known subspace methods
up to the choice of two weighting matrices W1

and W2. Some special cases are summarized in
table 2. CVA means Canonical Variate Analysis
(Larimore, 1990) and IVM means Instrumental
Variable Method (Viberg, 1995).

3.3 An iterative subspace algorithm

The purpose of this subsection is to outline a subspace
algorithm based on the following choice of weighting
matrix

W1 =
(
Hs
α

)−1

Condition on W1 in theorem 2 shows consistency
of that choice. Such a choice depends on unknown
quantities, i.e. the first α Markov parameters of the
noise model H(q). As a consequence one proposes the
iterative algorithm summarized in figure 1.

(
Ĥs
α

)−1

represents an estimation of
(
Hs
α

)−1
obtained from

model estimated at previous iteration.

It seems difficult to verify analytically if the above
algorithm converge and if the underlying solution is
a better estimation than the one obtained at the first
iteration. In section 5 simulation results will show the
interest of this iterative subspace algorithm.

4. SUBSPACE OUTPUT ERROR METHODS

In this section one proposes a second class of subspace
methods: the subspace output error methods. As is
the previous section, the identification criterion is first
introduced, then the underlying identification problem
and its solution are presented.

4.1 Identification criterion

The widespread output error methods consist in con-
sidering a model structure of the form (2) with K = 0.



The rational behind these methods is a judicious cor-
relation approach that is comprehensively presented
in (Ljung, 1999). The system model is validated pro-
vided that the prediction error is independent of the in-
put sequence. This identification framework assumes
that there is no modelling errors in the prediction error
and that the output disturbances are zero mean. The
underlying identification problem is

G(q)= ARG SOL



 lim
j→∞

1

j

j∑

t=1

ỹ(t)uT (t+ τ) = 0 ; ∀τ





G(q)

(9)

As in the previous section, it is possible to reformulate
the correlation based identification problem (9) using
Hankel matrices as follows

(A,B,C,D)= ARG SOL

{
lim
j→∞

1

αj
ỸfZ

T = 0

}

(A,B,C,D)

(10)

with Z =

(
Up

Uf

)
.

Such an optimization problem is the corner stone of
the subspace output error approach we are concerned
by. Table 3 summarizes the similarity between the pro-
posed approach and the usual output error approach.

4.2 Subspace estimation

In the following, one proposes an unifying theorem
for the estimation of the order and the observability
matrix according to the output error identification
problem (10).

Theorem 3.

Consider the class of systems and models respectively
described by So and M with K = 0. If the following
assumptions holds

(1) the matrix Ω, defined below, has rank (n+ αm)

Ω = lim
j→∞

1

j

(
Xt

Uf

)(
UT
p UT

f

)

(2) the input sequence is persistently exciting of
order (α+ β) ;

(3) α ≥ n ;
(4) β ≥ n ;
(5) W1 and W2 are two matrices such that W1 is no

singular and rank
(
Xt/

Up
Uf

W2

)
= rank

(
Xt/

Up
Uf

)
.

Then the model M which is solution of the problem
(10) is such that

(1) G(q) = Co(qIn −Ao)
−1Bo +Do ;

(2) The SVD of limj→∞ W1Yf/
Up
Uf

W2 is of the form

lim
j→∞

W1Yf/
Up
Uf

W2 =
(
U1 U2

)( S1 0
0 0

)(
V T
1

V T
2

)

with S1 ∈ Rn×n

(3) n is equal to the number of singular values dif-
ferent from zero

(4) Γα is given by

Γα = (W1)
−1U1S

1/2
1 T

where T is a similarity transformation. ¤

This theorem has two main interest:

• It’s based on the output error identification prob-
lem (10) similar to the usual output error problem
studied in (Ljung, 1999).

• It includes the well known subspace method
PI-MOESP (Verhaegen, 1994). To recover this
method, all one has to do is to take W1 = Iαp
and W2 = UpΠ

⊥
Uf

.

5. EXAMPLE

In this section one illustrates the performance of the
iterative algorithm proposed in subsection 3.3 with
some simulation results. To this end, let consider the
following example proposed in (Van Overschee and
De Moor, 1995)

So :





xo(t+1)=




0.67 0.67 0 0

−0.67 0.67 0 0

0 0 −0.67 −0.67

0 0 0.67 −0.67


xo(t)

+




0.6598

1.9698

4.3171

−2.6436


u(t)+




−0.1099

0.5667

0.3652

−0.5288


e(t)

y(t)=
(
−0.5749 1.0751 −0.5225 0.1830

)
xo(t)

−0.7139u(t)+e(t)

{u(t)} and {e(t)} are white noise sequences with
variance 1 and 8 respectively.

The iterative algorithm has been tested over 20 iter-
ations: at the first iteration one chooses W1 = Iαp
and W2 = ZpΠ

⊥
Uf

, then W1 = (Ĥs
α)

−1. The design
parameters are j = 100 , α = 8 and β = 16.

Let define Go(q) and Gi(q) as respectively the trans-
fer function between sequences {u(t)} and {y(t)} and
its estimation at ith iteration.

To deal with the performances of the algorithm, one
considers the behavior of the algorithm between two
successive iterations. To feature this, one computes the
following index for 2 ≤ i ≤ 20:

δ(i) = log10

(
‖Gi(q)−Gi−1(q)‖∞

mini(‖Gi(q)−Gi−1(q)‖∞)

)

Results are shown in figure (2). It is clear that there’s
a convergence of the algorithm in a subset of models.

Figure (3) compares Bode magnitude of Go(q), G1(q),
and G20(q). It shows that, in this example, the iterative



usual output error methods subspace output error methods
based on transfer function based on state space realization

model y(t) = G(q)u(t) + ỹ(t)

{
x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) + ỹ(t)

criterion
G(q)= ARG SOL

{
limj→∞

1

j

∑
j

t=1
ỹ(t)uT (t+τ)=0 ; ∀τ

}
G(q)

(A,B,C,D)= ARG SOL
{

limj→∞
1

αj
ỸfZ

T=0
}

(A,B,C,D)

Table 3. Usual and subspace output error methods
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Fig. 2. The convergence of δ(i)

Bode Diagram

Frequency  (rad/sec)

10
0

5

10

15

20

25

30

M
ag

nit
ud

e 
(d

B)

G
1
(q)

G
20

(q)
G

0
(q)

Fig. 3. Bode magnitude of Go(q), G1(q), and G20(q)

algorithm increases estimation quality compared with
the first estimated model.

6. CONCLUSION

This paper proposed an interpretation of subspace
methods. Fundamental results have been established
which allow to show that some well known subspace
methods can be included into two main classes of
subspace identification approaches. These classes are
based on criteria in the spirit of well known identif-
ication criteria: the prediction error criterion and the
output error criterion.
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