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Abstract: This paper demonstrates a practical way for system identification using
subspace and cubic spline methods to minimize the task of obtaining models using
experimental frequency responses for a large number of sensor-actuator locations.
These models are basically required in varied combinations for optimal actuator-
sensor placement. Measuring at all the required positions is impractical and
analytical modelling methods are helpless for nonideal boundary conditions. This
paper also presents experimental results of active noise control, using interpolated
models for an acoustic cavity. Acoustic enclosures are resonant systems which
required an accurate system model to design high performance controllers. A
controller using minimax LQG control method based on interpolated models
provides promising results for the use of interpolated models in control design.
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1. INTRODUCTION

Reducing noise in acoustic enclosures has been
a focus of active noise control research in the
previous decade (Elliott, 1999), (Balachandran et

al., 1996), (Fuller and von Flotow, 1995) due to
the rapid technology growth in affordable and
practical digital signal processing (Eriksson, 1990)
and (Kuo and Chen, 1958). The new technol-
ogy can systematically overcome the difficulties
of very high-order models, non-minimum phase
behavior and uncertainties caused by finite di-
mensional approximations, uncertainties caused
by non-uniform boundary conditions, and sound-
structure dynamics of enclosure structure (Kelkar
and Pota, 2000a).

Fig. 1. The experimental acoustic cavity

The modelling and control of acoustic cavities
with one wall made of flexible structure has been



discussed in (Banks et al., 1991), (Kim and Bren-
nan, 1999), and (Demetriou and Fahroo, 1999).
The work in (Banks et al., 1991) demonstrates
acoustic noise control using only structural ac-
tuators while (Demetriou and Fahroo, 1999) and
(Kim and Brennan, 1999) present acoustic noise
control using both structural and acoustic actua-
tors. Only (Kim and Brennan, 1999) has experi-
mental results which confirms with the theoretical
results that the control performance of the struc-
tural actuators alone is about two times better
than the performance of the acoustic actuators
only.

Analytic modelling for control often results in a
poor model if the system is even mildly realistic
(Kelkar and Pota, 2000b). In modern control, on
the other hand, system identification is presented
in state-space (SS) models standing out as the
natural way of representing multivariable systems
(McKelvey et al., 1996). Methods which identify
SS models by means of geometrical properties of
the input and output sequences without the need
for an explicit parameterizations of the model
set are commonly known as subspace methods
(McKelvey et al., 2000). Essentially, a subspace
algorithm delivers no system identification dif-
ference between multi-input, multi-out (MIMO)
and single-input, single-output (SISO). The algo-
rithm delivers estimated models from frequency
response in a SS basis, wherein the transfer func-
tion is insensitive to small perturbations in the
matrix elements. Frequency domain methods, in
addition, are suitable for building very accurate
models of complex systems which permit physical
interpretation of the parameters (Schoukens and
Pintelon, 1991).

One of the advantages of subspace methods is
that the identification of multivariable systems
is as simple as for scalar systems (McKelvey et

al., 2000). This leads to an idea that the numerical
approximation techniques should provide a possi-
bility of system identification at any position of a
plant where the necessary data is not available but
using the neighbouring data instead. Cubic spline
interpolation is the approximation technique used
in this paper. The cubic spline approximation uses
cubic polynomials between each successive pair
of nodes or available data to provide a fitting
curve where the desired value is expected to be
on it. The experimental plant in this paper is an
acoustic cavity at the Australian Defence Force
Academy (ADFA) shown in Figure 1.

This paper not only presents the approximation
of identified systems using SS representation for
positions where no frequency responses are mea-
sured, but also shows control application of mini-
max LQG control method (Petersen et al., 2000)
using these approximated system models in com-
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Fig. 2. System identification setup

parison with the performance of the same control
method using the system identification derived
from real measurement of frequency responses.
The experimental result of the controller using
interpolated model is promising.

Combinations of frequency responses of input to
output at arbitrary positions are required for most
of the optimal actuator-sensor placement meth-
ods. These methods are mostly based on con-
trollability and observability Gramians for several
sensor-actuator locations. Analytic modelling is
quite often inappropriate because of difficulties
of nonideal boundary condition. In addition, it
is impractical to obtain all required models from
measuring frequency response. The cubic spline
interpolation method can be used to fulfil mod-
elling work where required data is unavailable but
neighbouring data is provided.

2. EXPERIMENT SETUP

The acoustic cavity used for experiments at ADFA
has the dimensions 300 mm× 300 mm× 600 mm

with five sides made of timber. The sixth side
is covered by an aluminium square sheet with
thickness of 1 mm fixed tightly at all the four
edges by three screws each. The origin (0, 0, 0) is
at the bottom left corner of the aluminium plate,
looking into it; x-axis is along the width of the
cavity, y-axis is along the hight of the cavity, and
z-axis is into the cavity.

Input to the plate is provided by a Brüel &
Kjær electromagnetic shaker Type 4810 and
power amplifier type 2718. An OMETRON laser-
doppler-vibrometer VH300+ measures the point-
wise plate vibration output. Frequency response
data is collected by Brüel & Kjær PULSE multi-
analyzer in the frequency range of 10–300 Hz. The
set up is schematically illustrated in Figure 2.

Structure-borne sound at 50 or 100 Hz may often
be treated merely as mechanical vibrations with
a finite number of degrees of freedom (Cremer et
al., 1988). And, the size of the acoustic enclosure



is usually relative small such as a cavity of 30 ×
40× 150cm3 in (Kim and Brennan, 1999). Hence
the model-order of the dynamics in cavity acoustic
noise control experiments is generally not very
high. Furthermore, many successful experiments
of noise control in reverberant environment with
diverse methods (Elliott et al., 1990), (Fuller and
von Flotow, 1995), (Kim and Brennan, 1999),
(Poh et al., 1996) are concentrated in low range
of frequency only. For this reason, modelling is
concentrated in the frequency range of 10–300 Hz.

For Multi-input Single-output (MISO) system,
the sensor location is fixed while the actuator
position changes along the x-direction with a fixed
y-value or along y-direction with a fixed x-value.
The different actuator positions are assigned as
Ni,j . Similarly for SIMO systems the sensor mea-
sures at different positions along x- or y-direction
while the actuator is at a fixed position. The
different sensor positions are assigned as Nl,m.

3. SYSTEM MODELLING AND
IDENTIFICATION

3.1 State-space Representation

A system can be described as a SS representation
(Eykhoff, 1974) in time and frequency domain as

ẋ(t) = Ax(t) + Bu(t), sX(s)= AX(s) + BU(s)

y(t) = Cx(t) + Du(t), Y(s)= CX(s) + DU(s)

where coefficients

A is system characteristic n× n matrix,

B is input or distribution n× p matrix,

C is output or measurement q × n matrix,

D is input-output q × p matrix,

with n = system order, p = input number, and

q = output number.

It can be seen that matrices B, C and D depend
only on the input and output locations. Many op-
timal sensor-actuator location methods need mod-
els for a large number of sensor-actuator position
combinations. In most cases it is impractical to
obtain all these models from experimental data
and system identification techniques. Moreover,
when the structure of the system doesn’t satisfy
ideal boundary conditions, it becomes difficult to
obtain analytical expressions for matrices B, C
and D as functions of sensor-actuator location.

3.2 Interpolation procedure for identification

In this paper transfer functions corresponding to
different sensor-actuator locations are obtained
from interpolation. The data for interpolation is
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Fig. 3. The selected grid position on the plate

first obtained by making experimental measure-
ments at sensor-actuator locations along a coarse
grid on the plate. If the grid points selected are 20
mm apart, it yields 14 lines of 14 points in each.
For N = 196 points, 14 × 14 points, on the grid
as shown in Figure 3, a total of N 2 experimental
measurements are needed to be made. And, let the
grid position be Nx,y, where x = 1 is the bottom
line and y = 1 is the most left column. The grid
point N1,1 at the bottom left corner has the co-
ordinates (20, 20, 0).

To obtain an interpolated model between input
at a given actuator location Ni,j and an arbitrary
point rs on the plate for output, it can be done in
the following steps:

(1) Draw a straight line which includes the point
rs and at least four other grid points on the
line, the number of points can be more than
four. If this is not possible then first inter-
polations have to be done for other points
which enable at least four points with known
models to be on a straight line which has rs

on it.
(2) Perform a single-input-multi-output (SIMO)

system identification using the Subspace
method with input at the actuator location
Ni,j and output at all the selected four grid
locations.

(3) The above identification process will generate
matrices A, B, C, D. Let the order of the
system be n, then C will be a 4 × n matrix
corresponding to 4 outputs and D will be a
4× 1 matrix. The interpolated model for the
desired output location rs will be the same
A and B but a different 1× n C matrix and
1×1 D matrix. Let these C and D be C(rs)
and D(rs).

(4) The interpolation is done column-wise for
C and D, i.e., the first column of C is
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Fig. 4. A cubic spline interpolant

used to obtain the first element of C(rs),
the second column the second element, etc.
Whereas, only one column for D(rs) is to be
interpolated.

To obtain a model between a given sensor location
Nl,m on the grid and an arbitrary input location
ra, the same process as given above can be fol-
lowed. But this will be a multi-input-single-output
(MISO) identification. The expected model for the
input location ra will be the same A and C, which
are derived from the identification process. But a
different n×1 B and 1×1 D, where n is the system
order. The new obtained B and D are defined
as B(ra) and D(ra). Elements of the B(ra) and
D(ra) have to be then interpolated row-wise to
obtain the desired model. D(ra) is derived from
the interpolation of only one row.

3.3 Cubic spline interpolation

The cubic spline interpolation is the piecewise cu-
bic polynomial approximation between each suc-
cessive pair of nodes, positions used for inter-
polation. It provides sufficient flexibility in the
procedure for continuously differentiable with a
continuous second derivative on the interval, an
example as interpolated curve shown in Figure 4.
It presents a cubic spline interpolation I for a
function f , which defined on [a, b] with a set of
numbers xi (nodes, a = x0 < x1 < . . . < xn = b),
satisfied the following conditions:

1. Ii is subinterval of I on [xi, xi+1] for i =
0, 1, . . . , n− 1.

2. I(xi) = f(xi) for i = 0, 1, . . . , n.

3. Ii+1(xi+1) = Ii(xi+1) for i = 0, 1, . . . , n− 2.
4. I ′i+1(xi+1) = I ′i(xi+1) for i = 0, 1, . . . , n− 2.
5. I ′′i+1(xi+1) = I ′′i (xi+1) for i = 0, 1, . . . , n− 2.

3.4 System Identification

The interpolation method is now demonstrated by
obtaining a model for two conditions: (a) for a
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Fig. 5. Block diagram of SS in frequency domain
based on a SIMO system with four outputs
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given input location on the grid and an arbitrary
sensor location and (b) for sensor location on
the grid and an arbitrary actuator location. The
identification is done from measured frequency
response data. The model order is assumed 7 in
all the models obtained in this paper. It is not
practical to use very high order model to design
a controller (Pota et al., 2004). The accuracy of
the interpolated model is shown by comparing the
control performance of the controller using the
interpolated model and the controller using the
directly identified model from the measured data.

4. EXPERIMENTAL RESULTS

4.1 Single-Input-Multi-Output Identification

A model for an arbitrary sensor location at
rs = (050, 060, 0) and an given input at ra =
(050, 050, 0) is interpolated. The interpolated
model is based on a SIMO system identification
from four measured frequency responses with in-
put at ra and outputs at N1,3 = (020, 060, 0), N2,3

= (040, 060, 0), N3,3 = (060, 060, 0), and N4,3 =
(080, 060, 0). The SS representation of the SIMO
system can be described in time domain as
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Fig. 8. Block diagram of SS in frequency domain
based on a MISO system with four inputs

ẋ(t) = Ax(t) + Bu(t)

y1(t) = CIx(t) + d11u(t)

y2(t) = CIIx(t) + d21u(t)

y3(t) = CIIIx(t) + d31u(t)

y4(t) = CIV x(t) + d41u(t)

where, CI , CII , . . . CIV are rows of C and d11,
d21, . . ., d41 are elements of D corresponding to
positions N1,3, N2,3, N3,3, and N4,3. Or, it can be
presented in frequency domain as a block diagram
shown in Figure 5. The SS representation and the
block diagram show that the interpolated model
can be obtained from interpolating coefficient
matrices C and D of the SIMO SS representation.

Figure 6 presents the identified and the interpo-
lated model for actuator location ra and arbitrary
sensor location at rs. Figure 7 shows the closed-
loop response of the controller using minimax
LQG control design method based on this interpo-
lated model and the measured frequency response
of the input ra and the output rs in open-loop.

4.2 Multi-Input-Single-Output Identification

Since the model is generated from low frequency
response, it can be considered as Linear Time

0 50 100 150 200 250 300 350
−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

frequency (Hz)

Identified and interpolated Frequency responseof input:x050y050 to output:x050y050

Identified Frequency response
Interpolated Frequency response

Fig. 9. Identified and interpolated (from inputs)
frequency response of input at (050, 050, 0)
to output at (050, 060, 0)
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Invariant system which leads the results of the
MISO identification very similar to the results of
the SIMO identification. The similar experimental
conditions for the same input ra = (050, 050, 0),
which is purposed to be an arbitrary position
and the same output at rs = (050, 060, 0), which
is expected to be an given position, have been
done again. But, the interpolated model is based
on a MISO system identification obtained from
four measured frequency responses with output
at rs and inputs at N1,3 = (020, 050, 0), N2,3

= (040, 050, 0), N3,3 = (060, 050, 0), and N4,3 =
(080, 050, 0). The SS representation of the SIMO
system in time domain is described as

ẋ(t) = Ax(t) + BIu1(t) + BIIu2(t)

+ BIIIu3(t) + BIV u4(t)

y(t) = Cx(t) + d11u1(t) + d12u2(t)

+ d13u3(t) + d14u4(t)

where, BI , BII , . . . BIV are column of B and
d11, d12, . . . d14 are element of D at positions N1,3,
N2,3, N3,3, and N4,3 respectively. It is also de-
scribed in frequency domain as a block diagram
depicted in Figure 8. The interpolated and the
identified model is presented in Figure 9.The ob-
tained control performance based on the inter-



polated model in comparison with the measured
frequency response of the input-output in open
loop is presented in Figure 10.

Furthermore, different number of nodes and dif-
ferent distance between nodes have been investi-
gated. Interpolation derived from four nodes and
the distance of 20 mm between nodes provides
the best model for the minimax LQG controller.
Increasing the nodes number or the distance re-
duces the stability of the controller clearly, and
also decreases the ability of vibration damping
gradually. On the other hand, decreasing of the
nodes number does not increase the stability and
not improve the damping ability neither, whereas
it would rather be reduced.

The experimental results can be explained that
with proper nodes number the interpolated model
can be used for an high performance controller.

5. CONCLUSIONS

System identification at specific locations of an
already build structure without any measured
data can be approximated satisfyingly by cubic
spline interpolation method using the neighbour-
ing data for designing a high performance con-
troller. Because of less measurement, the inter-
polation method can save more than an half of
measurement work. It is useful for applications
that need a large number of measured frequency
responses of arbitrary positions. In this experi-
ment, proper number of nodes used for interpola-
tion is four. And, proper distance between nodes
is 20 mm.
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