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1. INTRODUCTION

In (Bondhus et al., 2004) we presented a new
method for master-slave synchronization of me-
chanical systems, with no force feedback. This
method can be used in a teleoperation system
when the task of the slave system is to track the
measured trajectory of a mechanism moved by a
human operator. The master-slave synchroniza-
tion can also be applied to problems where two
systems are to follow the same trajectory given
mathematically; only with a constant offset be-
tween the trajectories. An example is two vehicles
(ships, cars, mobile robots etc.) that are to move
in a synchronized manner.

In this paper we will present the experimental
results for the synchronization scheme in Bondhus
et al. (2004) applied to master-slave synchroniza-
tion of two robots. The aim is to obtain a better
understanding of the value and the limitations of

the theory. The back-to-back simulations are also
presented for comparison.

The type of problem considered in Bondhus et al.
(2004) and in this work is similar to the prob-
lems studied in Rodriguez-Angeles (2002)/Nijmei-
jer and Rodriguez-Angeles (2003). Both in Bond-
hus et al. (2004) and in Nijmeijer and Rodriguez-
Angeles (2003) a master-slave synchronization
scheme was developed based on the use of ob-
servers to estimate the velocities. The experi-
mental results and simulation results in this pa-
per show that our method has similar perfor-
mance to the method in Nijmeijer and Rodriguez-
Angeles (2003). However, because we use small
gain arguments in the theoretical analysis instead
of a Lyapunov function for the total system as
in Nijmeijer and Rodriguez-Angeles (2003), the
analysis in (Bondhus et al., 2004) give simpler
theoretical expressions for the transient bounds
and ultimate bounds of the synchronization errors



and observer errors. This makes the gain tuning
easier. In addition the choice of observers is more
flexible, because the theoretical analysis based on
the small gain theorem will be similar for all types
of observers, as long as the observers have been
shown to satisfy certain requirements.

This paper is organized as follows. In Section 2 the
models are described, and Section 3 presents the
general form of the observers in the synchroniza-
tion scheme, together with the observers used in
the experiments and simulations in this work. In
Section 4 the control input is presented. Section
5 describes the experimental setup, while Section
6 presents and discusses the experimental and
simulation results.

2. THE ROBOT MODELS

We consider the problem of master-slave synchro-
nization of two robots, which we assume to be
fully actuated. It is assumed that the robots have
the same geometry in the sense that they have
the same type of joints, although the physical
parameters like masses, inertia and lengths of the
links may be different. Only the joint positions of
the robots are measured. The objective is that the
joint positions of the slave robot should track the
measured joint positions of the master robot.

The master robot is controlled independently of
the movement of the slave robot. For the master
robot any conventional controller can be used
for tracking the desired trajectory. For the slave
robot a model-based observer will be included
in the synchronization scheme, and therefore a
mathematical model of the slave robot is needed.
For the master robot a mathematical model is
not essential for the synchronization scheme. If
a physically based model of the master robot is
not known, the trajectory of the master robot
can be modelled, for instance, by a set of double
integrators: ẋ1m = x2m, ẋ2m = q̈m, where the
acceleration q̈m is an unknown input.

The model of the slave robot can be written as

ẋ1 = x2 (1)

ẋ2 = M−1(x1)τ + β(x1,x2, θ) (2)

with

β(x1,x2, θ) = M−1(x1) [−C(x1,x2)x2 − g(x1)]

−M−1(x1)f(x2, θ) (3)

where θ ∈ Rp is a vector of the p parameters
in the friction model. The vector x1 ∈ Rn is
the vector of generalized coordinates (joint posi-
tions/orientations) and the vector x2 ∈ Rn is the
vector of generalized velocities. The vector τs ∈
Rn is the generalized joint forces, M(x1) ∈ Rn×n

is the inertia matrix, C(x1,x2)x2 ∈ Rn is the vec-
tor of generalized centripetal and Coriolis forces,

g(x1) ∈ Rn is the vector of generalized gravi-
tational forces and f(x2, θ) is the friction term.
The inertia matrix is known to be symmetric and
positive definite. Among the model parameters
only the friction parameters are assumed to be
uncertain.

The friction term f(x2, θ) is modelled by the same
model as in Nijmeijer and Rodriguez-Angeles
(2003), which is a special case of the friction model
in Hensen et al. (2000). The friction in joint j is
fj and it is only dependent on the velocity x2j of
joint j. The model is

fj(x2j ,θ) = Bvjx2j + Bf1j

(
1− 2

1 + e2w1jx2j

)

+ Bf2j

(
1− 2

1 + e2w2jx2j

)
(4)

where Bvjx2j is the viscous friction and the re-
maining terms model the Coulomb and Stribeck
friction.

3. THE ROBOT OBSERVERS

This section presents the observers used in the
experiments and simulations in this paper. Gen-
eral expressions for the observers are also given,
as the control in Section 4 is expressed in terms
of general observer terms. For the slave robot
the observer developed in Berghuis and Nijmeijer
(1993) and Berghuis (1993) was used. We extend
the observer by including a term to account for
the friction model. The observer is then given by

˙̂x1 = g1(x1, x̂1, x̂2) (5)
˙̂x2 = M−1

o (x1, x̂1, x̂2)τs + g2(x1, x̂1, x̂2, θ̂) (6)

with Mo = M(x1) and

g1(x1, x̂1, x̂2) = x̂2 + Ldx̃1 (7)

g2(x1, x̂1, x̂2) = −M−1(x1)f(x̂2, θ̂) + Lp2x̃1

+ M−1(x1) (−C(x1, q̇0)q̇0 − g(x1) + Lp1x̃1)
(8)

The observer errors are x̃1 := x1 − x̂1 and
x̃2 := x2 − x̂2, and we let x̃ := [x̃T

1 , x̃T
2 ]T . The

variable q̇0 is defined by

q̇0 = ˙̂x1 −Λ2x̃1 = x̂2 + (Ld −Λ2)x̃1 (9)

with Λ2 = ΛT
2 > 0. The gain matrices in the

observer should satisfy Ld = LT
d > 0, Lp1 =

LT
p1 > 0, Lp2 = LT

p2 > 0. The gain matrices are
also assumed to satisfy the following assumption:

Assumption 1. Ld, Lp1, Lp2 and Λ2 are constant
and diagonal. Moreover, Ld and Lp2 can be writ-
ten as Ld = ldI + Λ2 and Lp2 = ldΛ2.

For the master robot we may also use an observer
based on a physical model of the robot, but to in-
vestigate the synchronization scheme performance



when a master model is not available we have
in this paper applied the high gain observer of
Dabroom and Khalil (1997) for the master tra-
jectory. For this observer the the master robot is
just modelled as a double integrator as described
in Section 2.

The high gain observer is given by

˙̂x1m = g3(x1m, x̂1m, x̂2m) (10)
˙̂x2m = g4(x1m, x̂1m, x̂2m) (11)

with

g3 = x̂2m + D1x̃1m, g4 = D2x̃1m (12)

where the observer errors are x̃1m := x1m − x̂1m,
x̃2m := x2m− x̂2m, and we let x̃m = [x̃T

1m, x̃T
2m]T .

The gain matrices are D1 = diag
(

α1,1
ε1

, · · · α1,n

εn

)

and D2 = diag
(

α2,1

ε21
, · · · α2,n

ε2n

)
. In Dabroom and

Khalil (1997) it was shown that the high gain
estimate x̂2m is equivalent to the output found
by running x1m through a second order filter in
series with a differentiator.

The synchronization scheme developed in Bond-
hus et al. (2004) was developed for observers in
the general form given by (5-6) and (10-11), with
g1, g2, g3 and g4 locally Lipschitz, and Mo non-
singular.

4. THE CONTROLLER

In the experiments in this paper we have applied
the control deduced in (Bondhus et al., 2004),
which is given by

τs = Mo {fs(s)− g2 + g4 −Λ(g1 − g3)} (13)

with
s = (x̂2 − x̂2m) + Λ(x̂1 − x̂1m) (14)

where Λ is a positive definite matrix. The choice of
f(s) must be such that the dynamics ṡ = fs(s) are
globally asymptotically stable. We have here used
fs(s) = −Ass, where As is diagonal and positive
definite. The functions g1, g2, g3 and g4 are in
this paper the observer terms given by (7-8) and
(12).

The theoretical result of uniform ultimate bound-
edness of the synchronization errors requires that
the combination of the dynamics of the synchro-
nization errors and the dynamics of the observer
errors must satisfy the requirements given in
Bondhus et al. (2004, Th. 1). The dynamics of the
synchronization position error can be found from
the definition of s in (14) as shown in Bondhus et
al. (2004). The analysis to show that the specific
slave observer used in the experiments in this
paper satisfy the conditions needed in Bondhus et
al. (2004, Th. 1) are presented in (Bondhus, 2004).

5. EXPERIMENTAL SETUP

Fig. 1. The industrial transposer robot R1 used in
the synchronization experiments

Experiments and simulations were performed for
the synchronization of two industrial transposer
robots designed by the Centre for Manufacturing
Technology (CFT) Philips laboratory. One of the
robots is shown in Fig. 1. The other robot is
of the same type and size, and it has the same
geometric parameters such as lengths of the links.
The robots are installed at the Dynamics and
Control Technology Laboratory at the Eindhoven
University of Technology. They are fully actu-
ated by brushless DC servomotors. Although the
shaft of the motors and the corresponding links
are connected by belts, the pair servomotor-link
proved to be stiff enough to be considered a rigid
joint. For implementation of the controllers and
communication with the robots, the experimental
setup is equipped with a DS1005 dSPACE system,
with a processor PPC750, a 480 MHz clock and an
80 MHz bus clock. Throughout the experiments
the sampling frequency of the DS1005 dSPACE
system was 2kHz.

The robot models are described in Nijmeijer and
Rodriguez-Angeles (2003, App. H) and in more
detail in Rodriguez-Angeles et al. (2002). The
master robot is the one designated as Robot 1
(R1) and the slave robot is the one designated as
Robot 2 (R2). We will now give a summary of the
most important aspects of the models.

The robots have four degrees of freedom and seven
joints. The four Cartesian degrees of freedom are
denoted by xc1, xc2, xc3 and xc4. The variables xc1

and xc2 denote up/down and forward/backward
movement of the arm respectively, and xc3, xc4 are
the rotation and translation of the base on which
the arm is mounted. The coordinates xc3 and xc4

are absolute coordinates and are referred to with
respect to an inertial frame, frame {0}, at the
base of the robot. Meanwhile xc1, xc2 are relative
coordinates and are referred to with respect to a
frame at the edge of the translational platform,
frame {e}. The upper arm has a pantographic
design as shown in Fig. 2. The motors give forces
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Fig. 2. The pantographic design of the upper arm

along the axes xr and yr. The values of xr and yr

determine the values of the two angles α and β
shown in Fig. 2. The relation between xr, yr and
α, β is given by

β = arccos
−xr

r
+ arccos

r

2L4
(15)

and

α =





arcsin
(

yr

L4
− sin(β)

)

arccos
(
−xr

L4
− cos(β)

) (16)

with r = x2
r + y2

r , and L4 a geometric parameter
shown in Fig. 2.

The measured variables are xr, yr, xc3 and xc4.
Between the variables xr, yr and respectively
xc1, xc2 there are kinematic relations involving
only these variables and the geometric parame-
ters of the robot, i. e. xr = xr(xc2, θR) and
yr = yr(xc2,θR) where θR contains the geometric
parameters of the robot.

The joint coordinates are defined by

q1 := xc4 + ds (17)

q2 := xc3 − π

2
− 0.8292 (18)

q4 := −β +
π

2
(19)

q5 := β − α (20)

with ds = 0.185. We see that q1 is a linear dis-
tance, while q2, q4 and q5 are angles. We add the
index m for the master, and s for the slave. With
the notation used in the earlier sections x1m =
[q1m, q2m, q4m, q5m]T and x1 = [q1s, q2s, q4s, q5s]T .

Both robots have the same inverse kinematics
from the Cartesian coordinates to the joint co-
ordinates as given by Equations (17-20).

6. RESULTS

This section presents the experimental results for
the synchronization of the robots described in
Section 5, using the master-slave synchronization
scheme presented in Sections 3-4. The aim is to
better understand the relation between theory
and practice. To this end we also provide a back-
to-back comparison with simulations, that were

performed under ideal conditions, i. e. with a
perfect friction model, perfect system model and
without measurement noise.

The desired trajectory of the master robot was
given in Cartesian coordinates by

xcj,d(t) = a0,j + a1,j sin(2sfj πωt) + a2,j sin 4sf,jπωt

+ a3,j sin(6sf,jπωt) + a4,j sin(8sf,jπωt) (21)

with sf,j = 1 for xc1, xc2 and xc3, and sf,j = 0.25
for xc4, and the other parameters given in Table
1

Table 1. Desired trajectory parame-
ters.(j=2, 3, 4 [m], j=3 [rad])

ai,j i=0 i=1 i=2 i=3 i=4

j=1 -0.1343 -0.05 -0.015 -0.005 -0.01
j=2 0.2766 0.05 0.03 -0.03 0.02
j=3 2.4 0.15 0.05 -0.03 0.02
j=4 -0.265 0.2 0.1 -0.05 0.05

The desired trajectory was transformed by the
kinematic equations to a desired trajectory in the
joint coordinates. Fig. 3 shows the desired trajec-
tory in the joint space. In the simulations a model
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Fig. 3. Desired trajectory (xd) for the master
robot

of the master robot was not included as the ability
of this robot to follow its reference trajectory is
not of central importance. The important feature
of the synchronization scheme is the ability of the
slave manipulator to follow the actual behaviour
of the master robot. Therefore, to get a better
comparison between theory and experiments with
respect to this main feature, we used the measured
trajectory of the master robot in the experiment
as master trajectory in the simulations. This im-
plies that the master trajectory to be followed by
the slave robot was the same in the simulations as
in the experiments.

A friction model was included in the observer
of the slave robot as described by (4-8). We
have used the estimates of the friction parame-
ters found in Rodriguez-Angeles et al. (2002), al-
though these parameters were not expected to be
very accurate since the friction changes with time



and temperature. The friction parameters are pre-
sented in Table 2. In the simulations these friction

Table 2. Friction parameters.(j=1 [N],
j=2, 3, 4 [Nm])

Joint Bvj Bf1,j Bf2,j w1,j w2,j

q1 97.2600 -54.9912 -46.5915 150.3190 -98.9881
q2 9.0999 18.4710 11.1605 136.8945 -170.4702
q4 11.6257 -3.5232 2.2684 -35.3699 -89.3236
q5 9.6229 -5.8564 8.2304 36.0641 16.2942

parameters were used both in the simulation of
the robot dynamics and in the observer, i. e. the
simulations were performed under the ideal con-
dition of a perfect friction model. An experiment
was also performed with a 30 % reduction in all
the friction parameters.

The master robot was controlled by PD-controllers
in the Cartesian space. These simple controllers
were used for the master robot, as the objective
of this work was to investigate the synchronization
scheme, not how well the master robot followed its
desired trajectory. For the slave robot the observer
given in (5-9) was used, with Lp1 = 100I, Λ2 = 5I,
ld = 1000, where I is the identity matrix. The con-
troller matrices in (13) with fs(s) = −Ass were
chosen as As = 10I and Λ = 100I. For the master
robot the high gain observer given by (10-12) was
used with α1,i = 16, α2,i = 1 and εi = 0.01
for i = 1 · · · 4. The gains were chosen through
simulations with different gains, aiming at finding
gains which gave acceptably small synchroniza-
tion errors and at the same time control inputs
which did not reach the saturation limits. A wide
range of gains were seen to give acceptable results.
The theoretical conditions the gains must satisfy
are presented in (Bondhus, 2004). Although the
deduction of these conditions is long, the condi-
tions themselves are quite simple. However, the
conditions are conservative. In the simulations
and in practice the synchronization was seen to
work with much lower gains than required by the
theoretical conditions. The gains used here do not
satisfy all the theoretical conditions.

The initial values are shown in Table 3. Here x1d is
the desired position of the master robot, and x2d

the desired velocity of the master robot. The other
variables are defined earlier in this paper. The
initial conditions in the simulations were chosen
equal to those in the experiment, except that
x1d and x2d were not used, as discussed earlier.
Before the start of the synchronization scheme
the robots were moved to their initial positions
by simple PID-controllers based on filtering of the
position measurements. These positions were held
for some time and therefore the initial velocities
are approximately 0. The initial positions and
velocities were the same for both robots due to
the original setup of the laboratory, and therefore
the synchronization errors were 0 at the start of

Table 3. Initial values for the trajecto-
ries and the observers

(1) [m] (2) [rad] (3) [rad] (4) [rad]

x1d -0.08 0 -0.9899 1.98045
x2d 0.1131 0.8473 -0.1275 -0.8749
x1m -0.08 0 -0.9899 1.98045
x2m 0 0 0 0
x1 -0.0797 -0.00027 -0.9848 2.0035
x2 0 0 0 0

x̂1m -0.08 0 -0.9899 1.98
x̂2m 0 0 0 0
x̂1 -0.0797 -0.00027 -0.9848 2.0035
x̂2 0 0 0 0

the synchronization. The point t = 0 in the plots
in this paper is the time that the synchronization
starts. The transient response is small since we
had the initial tracking errors and observer errors
approximately equal to 0. Fig. 4 shows the time-
evolution of the position synchronization errors.
We see that the errors do not go to zero. This
complies with the theoretical result of uniform
ultimate boundedness. The bounds are small al-
though we have not used an accurate friction
model. It is also seen from Fig. 4 that reducing all
the estimated friction parameters by 30 % does
not result in much change in the synchronization
errors. This indicates that the synchronization
scheme has some robustness with regard to errors
in the estimated friction parameters.

There are some differences between the simulation
results and the experimental results. This is as
expected, since the simulation is done under the
assumption of a perfect model, exactly known
kinematic transformations, no actuator dynamics
and no measurement noise.

It was seen in the experiment that increasing Λm

(The lowest eigenvalue of Λ) gave lower synchro-
nization errors. However, in the experiment there
was a limit to the obtainable accuracy because of
the resolution of the encoders used to measure the
positions, and because the control inputs reached
their saturation limits if Λm was too high. The
encoder resolution gives an accuracy of ±0.5[mm]
in the measured values of xr, yr and xc4 (Nijmeijer
and Rodriguez-Angeles, 2003, p.114). Although
increasing Λm gives smaller synchronization er-
rors, one must be careful not to increase Λm too
much. Increasing Λm gives a higher bound for
||e2||∞, and this may lead to violation of the
small gain stability conditions, see Bondhus et al.
(2004).

Fig. 5 shows the experimental results with the
same conditions as before, but with a weight of
2.8 kg placed on the end effector of the slave
robot. This does not result in much change in the
synchronization errors. There are some spikes that
are much higher than before, at about 6.5 s in
Fig. 5. From this we see that the synchronization
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Fig. 4. Synchronization errors between measured
slave trajectory and measured master trajec-
tory, e1 = x1−x1m. Experiment with nominal
friction parameters (-), Experiment with 30
% reduction in estimated friction parameters
(-.-.), Simulation with nominal friction para-
meters (· · · )
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Fig. 5. Experimental results with a weight of 2.8
kg on the slave robot

scheme is also quite robust with regard to mod-
elling errors.

7. CONCLUSION

In this paper we have presented simulations and
experimental results for an observer-controller
scheme for master-slave synchronization, which
was developed in (Bondhus et al., 2004). The
bounds for the synchronization position errors in
the experiments were seen to be small even though
the estimated friction parameters were not very
accurate. A reduction of 30% in the nominal fric-
tion parameters only resulted in a small change
in the experimental synchronization errors. The
results indicate that the synchronization scheme
is robust with regard to errors in the friction

parameters. This is in accordance with the theory
presented in Bondhus et al. (2004). The robust-
ness with regard to modelling errors was inves-
tigated experimentally by placing a load on the
slave robot. This only resulted in a small change
in the synchronization errors, which indicates that
the synchronization scheme is quite robust with
regard to modelling errors. A full stability analysis
was not included because of space limitations, but
is given in (Bondhus, 2004).
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