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Abstract: A generic method to build Boolean sliding mode controllers for switching
systems, addressed by a previous contribution, basically formulates the synthesis problem
as a set of linear matrix inequalities (LMI) defining the parameters of commutation
hyperplanes which all intersect on a prescribed sliding manifold. Yet it cannot guarantee
the existence of a sliding motion from any initial condition, since it only ensures a local
attractivity of the sliding manifold with respect to state trajectories. Aiming at improving
this method, the present paper introduces some additional LMI constraints, which
eliminate from the admissible solutions the sets of commutation hyperplanes that some
state trajectories possibly never intersect. Algorithmic aspects are also considered for the
resolution. The efficiency of the proposed step is illustrated by its application to a
multilevel power converter. Copyright © 2005 IFAC
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1. INTRODUCTION

A large class of variable structure systems is made of
electrical networks including switching components
which change the overall topology according to their
state. Such systems are widespread in power
electronics where static dc--dc converters make an
important subclass of them. Multilevel ones,
especially, are more and more used in industrial
applications, and also studied by many researchers
(Schibli, et al., 1998; Cunha and Pagano, 2002).
Controlling these systems actually means deciding, at
each time, in which mode they have to work. So it
comes down to managing the individual states of their
different switching devices, which can be represented
by Boolean variables. Thus the control is intrinsically
a discrete one. For a long time, sliding mode control,
which belongs to wvariable structure control
techniques, has been investigated as an appropriate
methodology to regulate switching systems and
especially power converters (Utkin, 1977; Pinon, et
al., 2000). Yet, for this purpose, many works have
proposed piecewise continuous control laws, insofar
as classical sliding mode design approaches, such as
diagonalization or unit vector approach (Edwards and
Spurgeon, 1998; Perruquetti and Barbot, 2002),

naturally lead to this kind of laws. In the context of
switching systems, the actual control inputs of which
are Boolean, it is obvious that these laws cannot be
applied in an exact way, but require an additional
pulse-width modulation (PWM) regulation scheme,
the actual control becoming thus periodic. In order to
avoid this drawback and to actually act on the
switches states themselves in an asynchronous way,
which simplifies the control structure, a design
methodology has been established by Morvan et al.
(2004), which directly generates Boolean control
actions. For prior related references, see also (Richard
et al., 2003). The corresponding approach, based on
the structural properties of a generic model proposed
by Buisson, et al. (2001) for the overall class of
switching physical systems, formally characterizes a
prescribed sliding manifold as the intersection of as
many commutation hyperplanes of the state space as
available Boolean control inputs, and allows to
determine these hyperplanes by solving a set of linear
matrix inequalities (LMI), the expressions of which
are given in a generic way. Beyond its general
formulation, which makes it straightforwardly
applicable to an overall class of systems such as
power converters, the main advantage of this method



is the Boolean nature of the control laws it generates,
which renders a PWM useless. But it cannot
guarantee that a sliding motion will be possible from
any initial condition, since it only ensures the
attractivity of all the hyperplanes with respect to the
state trajectories in a local neighbourhood of their
common intersection. The present paper proposes
some refinement of this method, which concerns the
problem statement itself as well as its numerical
resolution. Basically, it introduces some additional
LMI constraints, which eliminate from the admissible
solutions the sets of commutation hyperplanes that
some state trajectories in some natural modes
possibly never intersect. As for the numerical aspects,
algorithmic considerations are developed that allow
reducing the domain where the solutions must be
sought. In order to illustrate the efficiency of the
proposed step, it is applied to a nontrivial case of
industrial interest, namely a 3-level dc-dc converter.
The paper is organized as follows. In section 2, the
highlights of the method reported in (Morvan et al.,
2004) are recalled. Next, section 3 introduces so-
called crossing conditions which complete this
method. In section 4, a procedure that simplifies the
search for numerical solutions is presented.
Eventually, section 5 describes an example of
application of the whole step.

2. BACKGROUND

Sliding mode control uses a high-speed switched
control law to drive a system’s state trajectory onto a
specified manifold, and then maintain it on this
manifold for all subsequent time. The control action
is a state feedback which is discontinuous across the
so-called sliding manifold, and which renders it
invariant (at least locally) with respect to the state
trajectories. Besides, once the sliding motion has
begun, its dynamics only depends on the sliding
manifold itself, and not on the actual control ; thus the
system behaves as if it was subject to a smooth
equivalent control. In the particular case of switching
systems, the generic design methodology established
by Morvan et al. (2004) is dedicated to square
systems with Boolean control inputs, whose state
equations are, in addition, supposed to be affine in the
control variables, such as defined by (1).
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In the above equations, Boolean vector p represents
the actual control input, whereas U denotes a constant
input vector. Moreover, D is a full rank matrix.
Most usual de-dc power converters can be modelled
by such a model as (1) where, in general, each
component of p allows to control the state of a pair of

switching devices that commutate simultaneously.
For this class of systems, the generic expression (2) of
a Boolean sliding mode control law was first
proposed by Richard et al., (2003). It allows a
regulation objective to be achieved, which consists in
maintaining the system output Y around a prescribed
reference Y..

Vie{l,...,m},

l+sgn[[8,(X)] 1+sen[Q7 (DX -Y,)]
Pz 2 - 2

2
sgn(x)=—lifxe |-0,0]
where
sgn(x)=+lifxe [0,+o [
The square matrix 0=[Q, 0, 0, |, which must
be non-singular, is a design parameter whose

dimension equals the number m of control inputs. In
the state space, each equation S,(X)=0, where

ie{l,...,m}, characterizes an hyperplane across which

one of the Boolean control inputs commutates. The
sliding manifold is defined as the intersection of those
m hyperplanes. It exactly coincides with the n—m
dimensional affine subspace where the control
objective is satisfied.

In this framework, the whole design process simply
amounts to the search for an appropriate regular
matrix O, namely a set of m independent vectors Q;
such that the resulting control laws given by (2)
ensure a local invariance of the sliding manifold

S= ﬂS,. with respect to state trajectories. In order to

i=1
solve this so-called reachability problem, Morvan et
al., (2004) have proposed a sufficient condition for
the local invariance of S, which consists in the

existence of a point X, eR" such that:

DX,-Y, =0 3)
and

Vie{l,...m}, for any of the 2""' possible

combinations of p; values with j#1i,
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Note that for a given i and a given set of p; values,

the couple of linear matrix inequalities displayed
above expresses the invariance condition of the i ™

switching hyperplane around point X, provided that
this set of p; values is applied.
Thus, given point X, , the synthesis problem has been

transformed into a decoupled set of LMI concerning
the parameters of m switching hyperplanes. Each



solution provides a set of such hyperplanes, whose
common intersection satisfies the control objective
and is made locally invariant with respect to state
trajectories.

Yet it should be underlined that the invariance of the
sliding manifold is only guaranteed around a single
point, for the choice of which, besides, no criterion
has been proposed so far, except in the trivial case
where equation (3) admits of a unique solution. But
the actual extent of the state space region where the
sliding manifold is attractive to state trajectories is not
mastered.

3. CROSSING CONDITIONS

Using such a control law as provided by the approach
recalled in section 2, the only way to ensure that a
sliding motion will take place is to choose initial
conditions inside the state space region where the
sliding manifold is attractive with respect to state
trajectories. In control applications where the initial
conditions cannot be fixed freely, knowing the
location of the compulsory initial state, the control
should ideally be built such that the resulting
attractivity region of the sliding manifold include this
point. Now it implies taking into account the initial
state of the system to be controlled in the design
process itself, which is not done in the method
described in (Morvan et al., 2004). Since the only
tuning parameter for the control law is matrix Q, a
first idea to improve the method would consist in
trying and control the boundaries of the attractivity
region through an appropriate choice of this matrix
among the possible solutions of (3-4). But it proves to
be a difficult process, since this region is defined in a
complex way for a given solution Q, as can be seen in
(Morvan et al., 2004). As a consequence, for the sake
of formal simplicity, the idea of controlling this
region has been abandoned.

To improve the design method even so, we propose,
instead, to complete it with additional constraints
which, given some specified initial state, increase the
chances to generate a sliding motion whatever the
location of this initial state may be (inside as well as
outside the attractivity region). Those new constraints
will be called crossing conditions. Indeed, they allow
to ensure that switching hyperplanes will necessarily
be intersected by the state trajectories in finite time
starting from the prescribed initial point, despite the
existence either of equilibrium points or of
asymptotic directions of divergence in the various
possible operating modes. Introducing these crossing
conditions together with the reachability ones in the
control design, a sliding motion is not really
guaranteed, but some cases where such a behaviour
cannot occur are directly eliminated.

Let now formalize this notion of crossing conditions.
There exist 2" possible combinations for the values of
the m Boolean control inputs p; where i€ {l,...,m}.
A specific operating mode of the system can be
associated with each of these combinations.

Moreover, this mode can be referred to in an
unambiguous way using an integer

re {0, 1,...,2" — 1} , which corresponds to the decimal

value of the binary sequence [p,....,p, ] defining

this mode. The sequence of Boolean inputs associated
with mode r will therefore be denoted by

[pl (7)seees P, (r)] from now on.

According to the generic expression (2) of the state
feedback control laws, in a given point X of the state
space, the value of a specific control input p; depends
on the location of this point with respect to the
hyperplane associated with the control:

p=1 & S(X)>0
p,=0 & S(X)<0
In other words, the following property holds in each
point X:
(25, (x)-1]s, (x) =5, (20) ©)

Hence can be deduced the validity domain of any
operating mode referred to by integer 7:

(6))

XeR'|Vie{l,,m},
r)= (7
[2p,(r)-1]S,(X)>0
As for the complementary domain, where the
previous mode is not applied, it is defined as :

XeR"|die {l,u-,m},

D(r)= ®)
[2p,(r)-1]S,(X)<0

In order to prevent the state from evolving without

intersecting any switching hyperplane, it is necessary

to guarantee that in each mode 7, all the state

trajectories converge towards domain D(r). The

crossing conditions can thus be expressed under the
generic form:

vre{o,1,....2" -1}, lim X, (t)e D(r)
t—>+o0

where X, (¢) denotes the time evolution of the state

vector when mode 7 is active.
Hence a new formulation of the same conditions:

vre{o,....2" -1},

Jie {L,-m}{[2p,(r)-1] lim S, (X,) <0
Eventually one gets their final expression:
vredo,....2" -1}, 3ie {1,--,m}|
QiT[Zpi(r)—lllim [DX,(1)-Y.]<0

—>too

(€))

Thus, crossing conditions provide a system of 2"
different alternatives between m LMI, each individual
inequality concerning one of the unknown variables
0;. In the most general case, those LMI can depend
on the initial conditions.

4. SOME COMMENTS ABOUT THE
RESOLUTION PROCEDURE



Collecting the early sufficient condition for local
invariance of the sliding manifold recalled in section
2 and the new crossing conditions established in
section 3, the refined design problem globally boils
down to searching for a point Xo€ R " as well as a set
of m independent vectors {Q, O, 0,}of R”

such that properties (3), (4) and (9) be satisfied all
together.

So the proposed step of synthesis primarily consists in
choosing a particular point X, of the state space

satisfying constraint (3), and next in seeking a
solution {0, 0, 0,} to the combination of LMI

defined by (4) and (9). Considered separately, the
LMI problem (4) can be decoupled with respect to

each variable Q; whereie{l,...,m}, the LMI sub

problem related to Q; being besides easily interpreted
in the m-dimensional space of its components: given
Xy, its general solution is a cone-shaped domain of
R™ bounded by 2" hyperplanes all including the
origin. Unfortunately, the introduction of the crossing
conditions renders the problem more complex, since
the latter cannot be decoupled any longer. So instead
of reducing it to m distinct sub problems in R "™, as
described previously, it is necessary to solve it
globally in R "™, A trial-and-error procedure is then
used, based on the exploration of the mxm-
dimensional parameter space. But such an exploration
does not need to be exhaustive. Indeed, let consider a
particular solution 0=[Q, 0, 0, to the LMI
problem defined by (4) and (9). As seen in section 2,

the control law associated with each of its columns
can be written as:

1+sgn| 0 (DX -Y,)]
pi(X)= B

It is obvious that such a Boolean state feedback
remains unchanged if Q; is multiplied by a strictly
positive constant factor. As a consequence, any other
matrix 0'=[e, 0, @,0, @,0,] also constitutes
an admissible solution, which besides exactly gives

the same control laws, provided that all the o
coefficients are strictly positive numbers. Especially,

the choice O, / ||Ql.||, which is always possible since Q;

(10)

cannot be null (matrix Q being necessary non
singular), provides an equivalent solution. One can
therefore, with no loss of generality, restrict the
search for each solution Q; to the unit radius hyper-
sphere of R™. Now this hyper-sphere can be
parameterised using m—1 angular variables. Thus, the
dimension of the global problem corresponding to the
search for a matrix solution Q is reduced from m’
variables taken in R to m(m—1) ones taken between
the bounds 0 and 2.

5. EXAMPLE OF A 3-LEVEL DC-DC
CONVERTER

In its early version reported in (Morvan et al., 2004),
our sliding mode control design methodology has

already been successfully applied to classical cases of
dc-dc power converters with one and two cells. Let
now consider the example of a 3-cell multilevel one
such as depicted in Figure 1.

T T; T

| | [ LR

vV, C Vs

C
L Ten/ Tl ok

Fig. 1. electrical scheme of a 3-cell dc-dc converter

In normal operating conditions, all its switches
commutate by pairs: T together with 75, T3 with Ty,
and Ts with Ts. Moreover, each pair is supposed to be
controlled by means of a Boolean input. Let

p= ( PrsP2s 3 )T stand for the resulting control

vector. Then the overall dynamics of the system can
be modelled by a single multimode state equation,
which obeys the following form:

R (l=p=p) 1-p,-p
L C C )
X= 1_”%”2 0 0 x+lo |E
l_pz_p3 0 0
L B(p)
A(p)

an

where Booleans p,, p, and p, respectively control
the state of pairs (7,,7,), (7;.7,)and (T3.7,):
p, =0 when 7| isoffand 7, ison, p, =0 when T,
isonand 7, off, p, =0 when T is on and 7| off.

Considering 3 output variables, namely both capacitor

voltages V>, V3 and the current /; in the load, the
model is made square, with an output equation given

by:
%00
2 1 (12)
=lrl=l0 = o|x
C
£ 1
0o 0 —
C
NI 2
D

It can be observed that the state equation (11) is affine
in the control, since al the terms in matrices 4(p) and
B(p) actually are affine functions of the Boolean
variables.

In this particular case, each value of the output vector
corresponds to one point in the state space. As a
consequence, given a prescribed reference Y , the
sliding manifold is reduced to a single point. So there
is no degree of freedom for the choice of X :

Lycl
X, =1Cy,

Cyc3 (13)

Applying the general methodology described in
section 2, the sufficient condition for the invariance
of the sliding manifold can be written as:



oV, <0 Q>0 O, >0
ov,>0 QJV,>0 QlV,>0
ov,<0 QlV,>0  QJV,<0
ov,>0 Qiv,>0 QlV,<0
o'v,<0 Qlv.<0  QlV,>0 (14)
ov.,>0 QlV,<0 OV, >0
o'v,<0 Qlv.<0 OV, <0
QITV8>0 Q2TV8<0 Q3TV8<0

where each V; denotes a constant vector, the value of
which is fully determined knowing the prescribed
reference and the system constitutive parameters:

T
v, = E-Ryy =Y 0 Jeu
L C
T
Vo= RV V2"V Va Va
= g2 el el el
L c C
E-R :
V3=( Jel 0 Oj
L
T
v, = Ry, =Y. pay 0
L C
T
v, = E—Ry,+y., _Ja 0
’ L C
T
R
V()Z(— Ve 0 0]
L
T
T E-Ry,+Y,+Vs _Ya_Ya
! L c cC
T
V8=(_Ryp1+yc3 0 _hj

In order to be able to express the crossing conditions,
the asymptotic behaviour of the system must be
studied in each possible operating mode: given the
initial state X(7,), the evolution of the state trajectories
have to be known when time tends towards infinity.
In the present example, assuming that no
commutation occurs, each mode leads to a unique
final state which depends on the initial one. The
resulting end points in the various modes are defined
in a generic way as:

0
Xooo=| % (to) Xi00=| X, (to)
) (to) CE
0 LE/R
Xoor = 0 Xion =| X% (to)
x (1) x (1) (16)
0 0
Xo10=| X, (to) X0=| —CE
x (1) % (2)
0 0
Xy =| X, (to) X = X, (to
0 —X, (to )-CE

At this stage, new constants vectors are introduced,
which depend on the previous ones:

Vo=DX,, =Y, V;=DX,, 1Y,
Vo=DX,o, =Y, V,=DX,, Y, (17)
Vi=DXy =Y, Vis=DX -1,
Vo=DX,,, =Y, Vi=DX -1,

The crossing conditions can be straightforwardly
expressed using the latter constant vectors:

07, >0 0V, >0 o7, >0 0V, >0
or or or or
0V,>0 & 10¥,>0 & 10/¥,<0 & 10,V,<0
or or or or
0%, >0 0V, <0 o7, >0 0V, <0
&
QITVIJ < 0 QITI/M < 0 QITVIS < 0 QITVI() < 0
or or or or
0V;>0 & 107,>0 & 10,/;<0 & (0,¥,<0
or or or or
0V >0 0V, <0 0Vs>0 0V <0

(18)

LMI combinatorial systems (14) and (18) fully
formalize the design problem. Indeed, admissible
solutions for the set of switching hyperplanes that will
determine the sliding mode control laws are defined
by regular square matrices Q of R*? whose columns
satisfy both systems.

Using the results of section 4, candidate solutions can
be parameterised as:
cos@, sing, cos@,sind, cos@;sind,
QO=|sing,sine, sing,sing, sing;sina,
cosq, cosc, Cos Y,
19)
Based upon a common sampling of interval [0,27]

for all the angular variables ¢, and ¢; where ie {1,3},
the discrete set of matrices Q fitting (19) is scanned,
testing for LMI conditions (14) and (18), until a
solution is found.

A set of typical values of the parameters is assumed
for the numerical resolution:
C=1.0e-3 F; L=75.0e-3 H;R=20.0 Q;E=90.0 V;

Then, starting from initial conditions located at the
origin of the state space (system at rest), an output
reference is arbitrarily defined by

Y, =(24 -30V 60V) . In the state space, it
corresponds to the desired equilibrium point X, of
coordinates (0.15 —0.03 0.06). In such conditions,
a particular solution is given by:

-0.0955 0.25 —0.6545

0=| 02939 0.1816 -0.4755 (20)
~0309 0309  0.809

The related expressions of the switching functions
can be written as:

S, (X)=—1.27x, +293.89x, —309.02x, +27.55
S, (X) =3.33x, +181.64x, +309.02x, —13.59 @b
S, (X) =—8.73x, —475.53x, +809.02x, — 61.50



Figure 2 shows the state trajectory obtained when
simulating the resulting Boolean control.

004

Fig. 2. state trajectory in sliding mode

It can be verified that starting from the initial point,
the state actually converges towards the desired
equilibrium point. In addition, looking separately at
the time evolutions of the individual state variables,
as depicted in Figure 3, it appears that a time response
of 30 ms is sufficient for the regulation objective to
be achieved by applying the synthesized control,
when the system is initially taken at rest.
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Fig. 3. time evolution of the state variables
6. CONCLUSION

This paper deals with a generic step to design sliding
mode controllers for a particular class of switching
systems, namely multilevel power converters, the
commutations of such systems being controlled by
the values of Boolean inputs. Recapitulating a method
initially proposed in a previous paper, whose specific
feature is to directly provide Boolean control actions,
it refines this method in several respects.

First, introducing so-called crossing conditions,
which restrict the field of possible control solutions, it
increases the chances to induce a sliding motion on a
prescribed manifold when the initial point is not
chosen inside the domain where the later manifold is
attractive with respect to state trajectories. Thus, it
allows starting a regulation process from any point in
the state space, and it does not require that the
attractivity region of the sliding manifold be precisely
known. From a formal point of view, the crossing
conditions are a combination of LMI, which complete
the former LMI expressing the design problem such
as it has been set in the original approach. The

solutions of the resulting LMI problem are regular
matrices whose columns define the parameters of
hyperplanes that delimit the switching laws and that
all intersect on the sliding manifold.

As a second point, the present paper investigates
some aspects related to the resolution of the LMI
problem. It establishes some kind of invariance
property concerning the Boolean control laws with
respect to changes of the matrix solution. Thus it
allows reducing the dimension of the domain where
this solution must be looked for.

Eventually it is shown in detail how the improved
methodology can be applied to regulate a multilevel
dc-dc converter with three cells. Further work will
consist in searching for criteria to optimize the
solution of the LMI problem, and if possible to
investigate the relation between its choice and the
performances of the control. Another interesting
perspective is the extension of this approach to
tracking, in the case of a time varying reference.
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