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Claude Bernard Lyon-1, F-69622 Villeurbanne, France
∗∗ Department of Applied Mathematics,

University of Twente, PO Box 217,

7500 AE, Enschede, The Netherlands

Abstract: In this paper it is shown how the port-Hamiltonian formulation of
distributed-parameter systems is closely related to the general thermodynamic
framework of systems of conservation laws and closure equations. The situation
turns out to be similar to the lumped-parameter case where the Dirac structure
captures the basic interconnection laws, and the closure equations correspond to
the constitutive relations of the energy-storing elements. Copyright c©2005 IFAC.

Keywords: Interconnected systems, modeling, energy storage, geometric theory.

1. INTRODUCTION

The treatment of infinite-dimensional Hamilto-
nian systems in the literature is mostly confined to
systems with boundary conditions such that the
energy exchange through the boundary is zero. On
the other hand, in many applications the interac-
tion with the environment (e.g. actuation or mea-
surement) takes place through the boundary of
the system. In (van der Schaft and Maschke, 2002;
Maschke and van der Schaft, 2000), we have devel-
oped a framework to represent classes of physical
distributed-parameter systems with boundary en-
ergy flow as infinite-dimensional port-Hamiltonian

systems. Key in this is the notion of a Dirac

structure. Dirac structures were originally intro-
duced in (Courant, 1990; Dorfman, 1993) as a geo-
metric structure generalizing both symplectic and
Poisson structures. Later on (van der Schaft and
Maschke, 1995; Dalsmo and van der Schaft, 1999;
Maschke and van der Schaft, 1997; Bloch and
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Crouch, 1999) it was realized that in the finite-
dimensional case Dirac structures can be em-
ployed to formalize Hamiltonian systems with al-

gebraic constraints. In order to allow the inclusion
of boundary variables in distributed-parameter
systems the concept of (an infinite-dimensional)
Dirac structure provides again the right type of
generalization with respect to the existing frame-
work (Olver, 1993) using Poisson structures.The
aim of this paper is to show how this port-
Hamiltonian formulation of distributed-parameter
systems can be based on the thermodynamic
framework for describing distributed-parameter
systems as systems of conservation laws, see e.g.
(Godlewsky and Raviart, 1996; Serre, 1999).

2. CONSERVATION LAWS, INTERDOMAIN
COUPLING AND BOUNDARY ENERGY
FLOWS: MOTIVATIONAL EXAMPLES

In this section we shall introduce the main con-
cepts by means of three classical examples of
distributed-parameter systems.



Example 2.1. (Inviscid Burger’s equation). The
viscous Burger’s equation is a scalar parabolic
equation which represents the simplest model for
a fluid flow ( Serre, 1999). It is defined on a one-
dimensional spatial domain (interval) Z = [a, b] ⊂
R, with the state variable α(t, z) ∈ R, z ∈ Z, t ∈
I , where I is an interval of R, satisfying the partial
differential equation

∂α

∂t
+ α

∂α

∂z
− ν

∂2α

∂z2
= 0 (1)

The inviscid (ν = 0) Burger’s equations may be
alternatively expressed as

∂α

∂t
+

∂

∂z
β = 0 (2)

where the state variable α(t, z) is called the con-

served quantity and the function β := α2

2
the flux

variable. Eq. (2) is called a conservation law, since
by integration one obtains the balance equation

d

dt

∫ b

a

αdz = β(a) − β(b) (3)

Furthermore, according to the framework of Irre-
versible Thermodynamics ( Prigogine, 1962), one
may express the flux β as a function of the gener-

ating force which is the variational derivative of
some functional H(α) of the state variable. This
variational derivative plays the same role as the
gradient of a function in the finite-dimensional
case. The variational derivative δH

δα
of a functional

H(α) is uniquely defined by the requirement

H(α + εη) = H(α) + ε

∫ b

a

δH

δα
η dz + O(ε2) (4)

for any ε ∈ R and any smooth function η(z, t)
such that α + εη satisfies the same boundary
conditions as α (Olver, 1993). For the inviscid
Burger’s equation one has β = δH

δα
, where

H(α) =

∫ b

a

α3

6
dz (5)

Hence the inviscid Burger’s equation may be also
expressed as

∂α

∂t
= −

∂

∂z

δH

δα
(6)

This defines an infinite-dimensional Hamiltonian
system in the sense of (Olver, 1993) with respect
to the skew-symmetric operator ∂

∂z
that is defined

on the functions with support contained in the
interior of the interval Z.

From this formulation one derives that the Hamil-
tonian H(α) is another conserved quantity. In-
deed, by integration by parts

d

dt
H =

∫ b

a

δH

δα
· −

∂

∂z

δH

δα
dz =

1

2

(

β2(a) − β2(b)
)

(7)
For later use we note that the right-hand side is a
quadratic function of the flux variables evaluated
at the boundary of the spatial domain Z.

The second example consists of a system of two

conservations laws, corresponding to the case of
two physical domains in interaction.

Example 2.2. (The p-system). ( Serre, 1999),
(Godlewsky and Raviart, 1996) The p-system is
a model for e.g. a one-dimensional gas dynamics.
Again, the spatial variable z belongs to an interval
Z ⊂ R, while the dependent variables are the spe-
cific volume v(t, z) ∈ R

+, the velocity u(t, z) and
the pressure functional p(v) (which for instance in
the case of an ideal gas with constant entropy is
given by p(v) = Av−γ where γ ≥ 1). The p-system

is then defined by the following system of partial
differential equations

∂v

∂t
−

∂u

∂z
= 0

∂u

∂t
+

∂ p(v)

∂z
= 0

(8)

representing respectively conservation of mass and
of momentum. By defining the state vector as
α(t, z) = (v, u)T , and the vector-valued flux

β(t, z) = (−u, p(v))
T

the p-system is rewritten as

∂α

∂t
+

∂

∂z
β = 0 (9)

Again, according to the framework of Irreversible
Thermodynamics, the flux vector may be written
as function of the variational derivatives of some
functional. Indeed, consider the energy functional

H(α) =
∫ b

a
H(v, u)dz where the energy density

H(v, u) is given as the sum of the internal energy
and the kinetic energy densities

H(v, u) = U(v) +
u2

2
, (10)

with −U(v) a primitive function of the pressure.
(Note that for simplicity the mass density has
been set equal to 1, and hence no difference is
made between the velocity and the momentum.)
The flux vector β may be expressed in terms of
the variational derivatives of H as

β =

(

0 −1
−1 0

)







δH

δv
δH

δu






(11)

The anti-diagonal matrix represents the canoni-
cal coupling between two physical domains: the
kinetic and the potential (internal) domain. Thus
the variational derivative of the total energy with
respect to the state variable of one domain gener-
ates the flux variable for the other domain. Com-
bining eqns. (9) and (11), the p-system may thus
be written as the Hamiltonian system







∂α1

∂t
∂α2

∂t






=







0 −
∂

∂z

−
∂

∂z
0













δH

δα1

δH

δα2






(12)

Using again integration by parts, one may derive
the following power balance equation:



d

dt
H = β1(a) β2(a) − β1(b) β2(b) (13)

Notice again that the right-hand side of this
power-balance equation is a quadratic function of
the fluxes at the boundary of the spatial domain.

Remark 2.3. In fact, every non-linear wave equa-
tion

∂2g

∂t2
−

∂

∂z

(

σ

(

∂g

∂z

))

= 0

may be expressed as a p-system using the change
of variables u = ∂g

∂t
, v = ∂g

∂z
and p(v) = −σ(v).

The last example is the vibrating string. It is again
a system of two conservation laws representing
the canonical interdomain coupling between the
kinetic energy and the elastic potential energy.
However in this example the classical choice of the
state variables leads to express the total energy as
a function of some of the spatial derivatives of the
state variables. We shall analyze how the dynamic
equations and the power balance are expressed in
this case and we shall subsequently draw some
conclusions on the choice of the state variables.

Example 2.4. (Vibrating string). Consider an elas-
tic string subject to traction forces at its ends,
with spatial variable z ∈ Z = [a, b] ⊂ R. Denote
by u(t, z) the displacement of the string and the
velocity by v(t, z) = ∂u

∂t
. Using the vector of state

variables x(t, z) = (u, v)T , the dynamics of the
vibrating string is described by the system of
partial differential equations

∂x

∂t
=





v
1

µ

∂

∂z

(

T
∂u

∂z

)



 (14)

where the first equation is simply the definition
of the velocity and the second one is Newton’s
second law. Here T denotes the elasticity modulus,
and µ the mass density. The time-variation of
the state may be expressed as a function of the
variational derivative of the total energy as in the
preceeding examples. Indeed, the total energy is
H(x) = U(u) + K(v), where the elastic potential
energy U is a function of the strain ∂u

∂z
(t, z)

U(u) =

∫ b

a

1

2
T

(

∂u

∂z

)2

dz (15)

and the kinetic energy K depends on the velocity
v(t, z) = ∂u

∂t
as

K(v) =

∫ b

a

1

2
µv(t, z)2 dz (16)

Thus the total system (14) may be expressed as

∂x

∂t
=







0
1

µ

−
1

µ
0













δH

δu
δH

δv






(17)

where δH
δu

= δU
δu

= − ∂
∂z

(

T ∂u
∂z

)

is the elastic force

and δH
δv

= δK
δv

= µv is the momentum.

In this formulation, the system is not anymore ex-
pressed as a system of conservation laws since the
time-derivative of the state variables is a function
of the variational derivatives of the energy directly,
and not the spatial derivative of a function of the
variational derivatives as before. Instead of being
a simplification, this reveals a drawback for the
case of non-zero energy flow through the boundary
of the spatial domain. Indeed, in this case the
variational derivative has to be completed by a

boundary term since the Hamiltonian functional
depends on the spatial derivatives of the state.
For example, in the computation of the variational
derivative of the elastic energy U one obtains by
integration by parts that U(u + εη)−U(u) equals

−ε

∫ b

a

∂

∂z

(

T
∂u

∂z

)

η dz+ε

[

η

(

T
∂u

∂z

)]b

a

+O(ε2)

(18)
and the second term in this expression yields an
extra boundary term.

Alternatively we shall now formulate the vibrating
string as a system of two conservation laws. Take
as alternative vector of state variables α(t, z) =
(ε, p)T , where ε denotes the strain α1 = ε = ∂u

∂z

and p the momentum α2 = p = µv. Recall that in
these variables the total energy is written as

H0 =

∫ b

a

1

2

(

T α2
1 +

1

µ
α2

2

)

dz (19)

and directly depends on the state variables and
not on their spatial derivatives. Furthermore, one
defines the flux variables to be the stress β1 =
δH0

δα1

= T α1 and the velocity β2 = δH0

δα1

= α2

µ
.

In matrix notation, the flux vector β is thus ex-
pressed as a function of the variational derivatives
δH0

δα
by

β =

(

0 −1
−1 0

)

δH0

δα
(20)

Hence the vibrating string may be alternatively
expressed by the system of two conservation laws

∂α

∂t
=







0
∂

∂z
∂

∂z
0







δH0

δα
(21)

satisfying the power balance equation (13).

3. SYSTEMS OF TWO CONSERVATION
LAWS IN CANONICAL INTERACTION

Let us now consider the general class of distributed-
parameter systems consisting of two conservation
laws with the canonical coupling as in the above
examples of the p-system and the vibrating string.
First, for 1-dimensional spatial domains, we in-
troduce the concept of interconnection structure



and port variables which are fundamental to the
definition of port-Hamiltonian systems. In the
second part we give the definition of systems of
two conservation laws defined on n−dimensional

spatial domains.

3.1 1-D spatial domain

Consider as before for the p-system and the vi-
brating string a system of two conservation laws
arising from the modelling of two physical do-
mains in canonical interaction:

∂α

∂t
=







0
∂

∂z
∂

∂z
0







δH0

δα
(22)

where α = (α1(t, z), α2(t, z))T . Let us now de-
fine an interconnection structure for this system
in the sense of network port-based modelling
(Karnopp et al., 1990) (Maschke et al., 1992) (van
der Schaft and Maschke, 1995). Define the vector
of flow variables f to be the time-variation of the
state and the vector of effort variables e to be the
vector of variational derivatives, that is

f =
∂α

∂t
, e =

δH0

δα
(23)

The flow and effort vectors are power-conjugated

since their product is the time-variation of the
total energy:

d

dt
H0 =

∫ b

a

(

δH0

δα1

∂α1

∂t
+

δH0

δα2

∂α2

∂t

)

dz

=

∫ b

a

(e1 f1 + e2 f2) dz

(24)

Considering the right-hand side of the power bal-
ance equation (13) it is clear that the energy
exchange of the system with its environment is
determined by the flux variables at the boundary
of the domain. Therefore let us define two bound-
ary variables by

(

f∂

e∂

)

=

(

e2

e1

)

=







δH0

δα2

δH0

δα1






=

(

v

σ

)

(25)

These boundary variables are power-conjugated
since their product β1β2 = ebfb = σv equals
the right-hand side of the power balance equa-
tion (13). Considering the four power-conjugated
variables f1, f2, f∂ , e1, e2, e∂ , the power balance
equation (13) implies

∫ b

a

(e1f1 + e2f2) dz + e∂(b)f∂(b)− e∂(a)f∂(a) = 0

(26)
This bilinear product between the power conju-
gated variables is analogous to the product be-
tween the circuit variables expressing the power

continuity relation in circuits and network mod-
els (Karnopp et al., 1990) (Breedveld, 1984).
Such products are also central in the definition
of implicit Hamiltonian systems (Courant, 1990)
(Dorfman, 1993) and port-Hamiltonian systems in
finite dimensions (van der Schaft and Maschke,
1995) (Maschke and van der Schaft, 1997), and
the same will hold for infinite-dimensional port-
Hamiltonian systems (Maschke and van der Schaft,
2000) (van der Schaft and Maschke, 2002).

It follows that the interconnection structure un-
derlying the system (22) (analogous to Kirchhoff’s
laws for circuits) is defined by (25) together with

f =







0
∂

∂z
∂

∂z
0






e (27)

This is the one-dimensional Stokes-Dirac struc-
ture of (van der Schaft and Maschke, 2002).

3.2 N -dimensional spatial domain

Let the spatial domain Z ⊂ R
n be an n-

dimensional smooth manifold with smooth (n−1)-
dimensional boundary ∂Z. Denote by Ωk(Z) the
vector space of (differential) k-forms on Z (respec-
tively by Ωk(∂Z) the vector space of k-forms on
∂Z). Denote furthermore Ω =

⊕

k≥0
Ωk(Z) the

algebra of differential forms over Z and recall that
it is endowed with an exterior product ∧ and an
exterior derivation d.

Definition 3.1. A system of conservation laws is
defined by a set of conserved quantities αi ∈
Ωki(Z), i ∈ {1, . . . , N} where N ∈ N, ki ∈ N,

defining the state space X =
⊗

i=1,..,N Ωki(Z),
and satisfying a set of conservation laws

∂αi

∂t
+ dβi = gi (28)

where βi ∈ Ωki−1 (Z) denote the set of fluxes

and gi ∈ Ωki(Z) denote the set of distributed

interaction forms. In general, the fluxes βi are
defined by so-called closure equations

βi = J (αi, z) , i = 1, .., N (29)

leading to a closed form for the dynamics of the
conserved quantities αi. The integral form of the
conservation laws yields the balance equations

d

dt

∫

S

αi +

∫

∂S

βi =

∫

S

gi (30)

for any surface S ⊂ Z of dimension equal to the
degree of αi.

Remark 3.2. A common case is that Z = R
3 and

that the conserved quantities are 3-forms, that is,
the balance equation is evaluated on volumes of



the 3-dimensional space. In this case Eqn. (28)
takes in vector calculus notation the familiar form

∂αi

∂t
(z, t) + divzβi = gi , i = 1, .., n (31)

However, conservation laws may correspond to
differential forms of any degree. Maxwell’s equa-
tions are an example where the conserved quanti-
ties are differential forms of degree 2.

In the sequel, as in the case of the 1-dimensional
spatial domain, we shall consider a particular class
of systems of conservation laws where the closure
equations are such that fluxes are (linear) func-
tions of the variational derivatives of the Hamilto-
nian functional. First recall the general definition
of the variational derivative of a functional H(α)
with respect to the differential form α ∈ Ωp(Z)
(generalizing the definition given before).

Definition 3.3. Consider a density function H :
Ωp(Z) × Z → Ωn(Z) where p ∈ {1, .., n}, and
denote by H :=

∫

Z
H ∈ R the associated func-

tional. Then the uniquely defined differential form
δH
δα

∈ Ωn−p(Z) which satisfies for all ∆α ∈ Ωp(Z)
and ε ∈ R

H(α+ε∆α) =

∫

Z

H (α)+ε

∫

Z

[

δH

δα
∧ ∆α

]

+O
(

ε2
)

is called the variational derivative of H with
respect to α ∈ Ωp(Z).

Definition 3.4. Systems of two conservation laws

with canonical interdomain coupling are systems
of two conservation laws involving a pair of con-
served quantities αp ∈ Ωp(Z) and αq ∈ Ωq(Z),
differential forms on the n-dimensional spatial do-
main Z of degree p and q respectively, satisfying
p + q = n + 1 (’complementarity of degrees’).
The closure equations generated by a Hamiltonian

density function H : Ωp(Z)×Ωq(Z)×Z → Ωn(Z)
resulting in the Hamiltonian H :=

∫

Z
H ∈ R are

given by

(

βp

βq

)

= ε

(

0 (−1)
r

1 0

)









δH

δαp

δH

δαq









(32)

where r = pq+1, ε ∈ {−1, +1}, depending on the
sign convention of the considered physical domain.

In the same way as for systems defined on 1-
dimensional spatial domains, one may define for
n− spatial domains pairs of power conjugated
variables. Define the vector of flow variables to
be the time-variation of the state, and the effort

variables to be the variational derivatives

(

fp

fq

)

=







∂αp

∂t
∂αq

∂t







(

ep

eq

)

=









δH

δαp

δH

δαq









(33)
Their product equals again the time-variation of
the Hamiltonian

dH

dt
=

∫

Z

(ep ∧ fp + eq ∧ fq) (34)

Using the conservation laws (28) for gi = 0, the
closure relations (32) and the properties of the
exterior derivative d and Stokes’ theorem, one
obtains

dH

dt
=

∫

Z

εβq ∧ (−dβp) + (−1)
r
βp ∧ ε(−dβq)

=−ε

∫

Z

βq ∧ dβp + (−1)
q
βq ∧ dβp

=−ε

∫

∂Z

βq ∧ βp (35)

Finally, as before we define the power-conjugated
pair of flow and effort variables on the boundary

as the restriction of the flux variables to the
boundary ∂Z of the domain Z:

(

f∂

e∂

)

=

(

βq |∂Z

βp|∂Z

)

(36)

On the total space of power-conjugated variables,
that is, the differential forms (fp, ep) and (fq, eq)
on the domain Z and the differential forms (f∂ , e∂)
defined on the boundary ∂Z, one defines an in-

terconnection structure (underlying the system of
two conservation laws with canonical interdomain
coupling of Definition 3.4) by Eqn. (36) together
with

(

fq

fp

)

= ε

(

0 (−1)
r

d

d 0

) (

eq

ep

)

(37)

This interconnection is power-continuous since by
(36) and (37)

∫

Z

(ep ∧ fp + eq ∧ fq) + ε

∫

∂Z

f∂ ∧ e∂ = 0 (38)

The above power-continuous interconnection struc-
ture can be formalized as a geometric struc-
ture, called Stokes-Dirac structure (van der Schaft
and Maschke, 2002), leading to the definition of
distributed-parameter port-Hamiltonian systems.

4. CONCLUSIONS AND FINAL REMARKS

In this paper we have related the framework for
compositional modelling of distributed-parameter
systems as port-Hamiltonian systems, to the basic
thermodynamic framework of conservation laws
and closure equations. The situation turns out
to be quite similar to the lumped-parameter case



where the Dirac structure incorporates the ba-
sic topological interconnection laws (Kirchhoff’s
laws, Newton’s third law) together with other
power-conserving interconnection constraints (see
e.g. (Maschke and van der Schaft, 1997) (Maschke
and van der Schaft, 1997) (van der Schaft and
Maschke, 1995)), and the closure equations corre-
spond to the constitutive relations of the energy-
storing elements.

A prominent property of Dirac structures is that
they are closed under power-conserving intercon-
nection. This enables to link port-Hamiltonian
systems (lumped- or distributed-parameter) to
each other into a new port-Hamiltonian system.
This leads to consider control strategies where
the controller system is also a port-Hamiltonian
system. Initial results along these lines have shown
to be very promising, see e.g. (Rodriguez et al.,
2001; van der Schaft and Maschke, 2001).
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