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Abstract: When the sensor readings are perturbed by an unknown stochastic
time jitter, classical system identification algorithms based on additive amplitude
perturbations will give biased estimates. We here outline the maximum likelihood
procedure, for the case of both time and amplitude noise, in the frequency domain,
based on the measurement Discrete Time Fourier Transform (DTFT). The method
directly applies to output error continuous time models, while a simple sinusoid
in noise example is used to illustrate the bias removal of the proposed method.
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1. INTRODUCTION

Nonuniform sampling appears in, e.g., automo-
tive applications, radar imaging, event controlled
systems and time critical applications. The non
uniformity in the time stamps have different char-
acteristics, depending on the application and in
many cases the sampling is almost uniform with
sampling noise corrupting the exact timing. E.g.,
when the sampling frequency is close to the clock
frequency, when sampling requests are delayed
through communication or, when imperfect me-
chanics are used to synchronize measurements.
In these cases it is not obvious that the true
measurement times are known, but instead the
stochastic characteristics of the sampling jitter
noise is known.

This work discusses the impact of unknown
nonuniform jitter sampling on signal estimation.
We describe the effect and use this knowledge
to improve the maximum likelihood parameter
estimation of a single sinusoid. The signal esti-

mation problem is introduced in Section 2 and in
Section 3 the effect of noise on the transform is
shown. The stochastic properties of the transform
is further evaluated in Section 4 and an example
of parameter estimation is given in Section 5. The
work is concluded and future actions are discussed
in Section 6.

2. REVIEW AND PROBLEM FORMULATION

The system identification problem under consid-
eration can be stated as estimating the parameter
θ in a model structure

M : gθ(t), hθ(t), pθ(τ) (1)

based on discrete time measurements corrupted
by time and amplitude noise according to

yk = s(kT + τk; θ) + v(kT + τk; θ),

s(t; θ) = gθ ∗ u(t),

v(t; θ) = hθ ∗ e(t).

(2)

Here u is a known input, e is noise with known
characteristics, and τk is the sampling noise.



The sampling noise is a sequence of indepen-
dent stochastic variables with probability density
function (pdf) pθ(τ). Both the signal, noise and
sampling models can be parameterized in the un-
known parameter vector θ. In system identifica-
tion it can be relevant to find the signal model,
gθ(t), the noise model, hθ(t) or even the sampling
model, pθ(τ). (Ljung 1999) treats the standard
case, when τk = 0. One example of a signal model
is a continuous time output error model, with

s(t; θ) = gθ ∗ u(t) (3a)

S(f ; θ) = G(f ; θ)U(f), (3b)

in the time and frequency domain, respectively.

Signal estimation in the time domain, e.g., the
least squares (LS) solution

θ̂LS = arg min
θ

N∑

k=1

(yk − s(kT ; θ))2, (4)

is less attractive for our case with time noise. For
that reason, we focus on frequency domain meth-
ods where the signal model is directly expressed as
a continuous time model S(f ; θ). The basic idea is
to derive the mean µY (θ) and covariance RY (θ) of
the measurement DTFT Y (f) in several frequen-
cies, preferably the DFT frequencies f = n/NT ,
or a subset thereof. The central limit theorem
motivates that the DTFT vector, here denoted Y ,
is asymptotically Gaussian (AsN ) distributed,

Y ∈ AsN (µY (θ), RY (θ)). (5)

The asymptotic ML estimate is given by the
minimizing value in

l(θ) = (Y − µY (θ))RY (θ)−1(Y − µY (θ))T +

+ ln detRY (θ).
(6)

Note that the covariance matrix, RY , will be close
to diagonal if the frequency points are chosen suf-
ficiently far apart. The explicit dependence on the
underlying model structure is derived in Section 4.
The minimization over l(θ) is not explicit, so a
numeric search algorithm is needed. (Pintelon and
Schoukens 2001) is a nice reference for maximum
likelihood estimates and frequency domain identi-
fication. More estimation techniques is also found
in the standard reference (Ljung 1999).

For the well studied special case of amplitude
noise only, we have

µY (f ; θ) = S ∗ Γp
N (f) (7)

RY (f ; θ) = Φvv(f ; θ), (8)

where Φvv(f ; θ) is the noise spectra and * de-
notes convolution. The frequency window Γp

N (f)
includes

• Leakage: local behavior around f depending
on the number of samples.

• Aliasing: Γp
N (f) = Γp

N (f + k/T ) is a pe-
riodic function summing up all signal part

frequencies being multiples of the sampling
frequency 1/T according to Poisson’s sum-
mation formula. That is, the continuous time
OE model (3b) is summed up using Poisson’s
summation formula implicitly in this formu-
lation.

These well-known facts have to be modified when
time noise is introduced. Aliasing still occurs, but
higher frequencies are damped and distorted, and
the leakage effect becomes frequency dependent.

This work will concentrate on describing the
properties of the transform, when the DTFT of
the sequence yk is produced, given the sampling
pdf, p(τ), and additive white Gaussian amplitude
noise, v, i.e., the model structure in Eq. (1) is
reduced to

M : gθ(t), hθ(t) = δ(t), pθ(τ) = p(τ).

These properties will be used to perform the ML
estimate for θ, in gθ(t).

Nonuniform sampling, both deterministic and
stochastic, is described in (Bilinskis and Mikelsons
1992) and (Marvasti 2001). The Dirichlet trans-
form is discussed as the accurate way of per-
forming frequency transform of nonuniform time
samples in (Bilinskis and Mikelsons 1992). The
common factor for these works is the complete
knowledge of the time stamps, tk, which is the
main difference from this work.

System identification in the frequency domain
has also been treated before, for uniform sam-
pling in the time domain, both theoretical as-
pects (Gillberg and Ljung 2005) and identifica-
tion in an automotive application (Gillberg and
Gustafsson 2005). These publications address the
problem assuming that the sampling times are
known, but are also aiming at frequency domain
identification based on nonuniform time domain
sampling.

3. FREQUENCY TRANSFORM WITH NOISE

As stated we constrain the investigation to ad-
ditive white Gaussian noise v and a completely
known sampling noise pdf. To clearly show the
impact of the two noise types in Eq. (2), we
describe the transform for the combined sampling
model

yk = zk + vk (9a)

zk = s(kT + τk) (9b)

s(t) =

∫

S(f)ei2πft df (9c)

where both noises are independent identically
distributed. The measurement noise, vk, is white
and Gaussian with E[vkvl] = σ2δ(k − l), and
the sampling noise, τk, is limited to the interval
[−T/2, T/2] and E[τk] = 0.



This section describes the effect of the noises on
the Discrete Time Fourier Transform (DTFT).
The stochastics of the transform will differ for the
two noise models. The DTFT of the sequence yk

is

Y (f) =

N−1∑

k=0

yke−i2πfkT

=

N−1∑

k=0

(zk + vk)e−i2πfkT

= Z(f) +
N−1∑

k=0

vke−i2πfkT

︸ ︷︷ ︸

V̂ (f)

, (10)

where, using Eq. (9c), the sampling noise part
becomes

Z(f) =

N∑

k=0

zke−i2πfkT

=

N−1∑

k=0

∫

S(ϕ)ei2πϕ(kT+τk) dϕe−i2πfkT

=

∫

S(ϕ)W (f, ϕ) dϕ,

W (f, ϕ) =

N−1∑

k=0

ei2π(ϕ−f)kT ei2πϕτk . (11)

Note that this continuous time frequency domain
approach is perhaps the only way to explicitly
separate the signal and time errors. The assump-
tion of Gaussian noise together with the fact that
the sampling noise are independent identically
distributed random variables gives that the DTFT
of the sequence yk in Eq. (9a) is distributed as

Y ∈ AsN (E[Z],Cov(Z) + Cov(V̂ )), (12)

according to the central limit theorem.

4. FIRST MOMENTS WITH SAMPLE NOISE

The moments of the transform has an explicit
dependence on the signal transform S(f ; θ). In
the following derivation the dependence on the
parameter θ will be implicit. The moments of the
transform in Eq. (5) is given as

µY (f) = E[Y (f)] = E[Z(f)]

=

∫

S(ϕ)E[W (f, ϕ)] dϕ,

=

∫

S(ϕ)µW (f, ϕ) dϕ (13)

and

RY (f, ϕ) = RZ(f, ϕ) + RV̂ (f, ϕ),

with

RZ(f, ϕ) = Cov(Z(f), Z(ϕ))

=

∫∫

S(η)Cov(W (f, η),W (ϕ, ζ))S(ζ)∗ dη dζ,

=

∫∫

S(η)RW (f, η, ϕ, ζ)S(ζ)∗ dη dζ. (14)

The addition to the covariance from the measure-
ment noise is simply

RV̂ (f, ϕ) = Cov(V̂ (f), V̂ (ϕ))),

= σ2
N−1∑

k=0

e−i2π(f−ϕ)kT .

The following Lemmas show the statistics for the
stochastic window, W , needed in Eqs. (13) and
(14).

Lemma 1. (Mean value). The mean value, µW ,
with respect to τk, of the stochastic window,
W (f, ϕ), defined in Eq. (11), is

µW (f, ϕ) = γg(−ϕ)Γp
N (f − ϕ),

where γg(f) is the characteristic function of τ and
Γp

N (f) is the Dirichlet function.

Proof:

µW (f, ϕ) = E[W (f, ϕ)],

=

N−1∑

k=0

ei2π(ϕ−f)kT E[ei2πϕτk ]

= γg(−ϕ)
1 − ei2π(ϕ−f)NT

1 − ei2π(ϕ−f)T
︸ ︷︷ ︸

Γp

N
(f−ϕ)

,

where we recognize the characteristic function and
the Dirichlet function. �

The term γg(f) = E[e−i2πfτk ], is the character-
istic function for τk and models damping cor-
responding to the sampling noise. The Dirichlet
function, Γp

N (f), becomes the periodic window
arising from the actual sampling,

Γp
N (f) = e−iπf(N−1)T sin(πfNT )

sin(πfT )
.

Thus, when there is no sampling noise, the ex-
pected value is the usual periodic window, Γp

N ,
since, in that case γg(f) = 1. Also, in that
case, E[Y (f)] =

∫
S(ϕ)Γp

N (f − ϕ) dϕ, which is
equal to the DTFT of s(kT ). Note also that since
γg(f) is the characteristic function (CF) for the
distribution of τk, the exact value can be found
in textbooks on probability theory for standard
distributions.

In (Souders et al. 1990), the Fourier transform
of E[s(t + τk)] is calculated to show the bias
introduced by the jitter sampling. The effect is
shown to be a linear filter on S(f), and since
E[DFT (yk)] = DFT (E[yk]) the result in the



Lemma above shows the different effect the jitter
sampling has on the DFT compared to on the
Fourier transform. Basically, F(E[s(t + τ)]) =
S(f)γg(f) in the case of even noise distributions.

Lemma 2. (Covariance). The covariance, RW , of
W is given as

RW (f, η, ϕ, ζ) + µW (f, η)µW (ϕ, ζ)∗

= E[W (f, η)W ∗(ϕ, ζ)],

= ΛT
τ (η, ζ)ΛN (f − η, ϕ − ζ).

The two factors correspond to parts depending on
the sampling noise, Λτ , and on the finite sampling,
ΛN , and they are

Λτ (f, ϕ) =





γg(−f)γg(ϕ)
γg(ϕ − f)

γg(−f)γg(ϕ)





and

ΛN (f, ϕ) =





Σp
N (f,−ϕ)

Γp
N (f − ϕ)

Σp
N (−ϕ, f)



 ,

respectively. The functions were defined in Lemma 1,
except for

Σp
N (f, ϕ) =

N−1∑

k=0

k−1∑

l=0

γp(f)kγp(ϕ)l

=







1
(1−γp(ϕ)) [Γp

N (f) − Γp
N (f + ϕ)] , γp(ϕ) 6=1,

ρ2
ρN (−1+N(ρ−1−ρ−2))+1

(1−ρ)2 ,

{
γp(f)=γp(ϕ),

ρ=γp(f) 6=1

N(N−1)
2 , γp(f)=γp(ϕ)=1,

with γp(f) = e−i2πfT . 1

Proof: The second moment of the stochastic win-
dow, W , is by definition

E[W (f, η)W ∗(ϕ, ζ)]

=
1

N2

∑

k,l

ei2π(η−f)kT E[ei2π(ητk−ζτl)]e−i2π(ζ−ϕ)lT

=
∑

k

∑

l<k

+
∑

k

∑

l=k

+
∑

k

∑

l>k

= V1 + V2 + V3.

It will be helpful to note that

N−1∑

k=0

ak

k−1∑

l=0

bl =
N−1∑

k=0

ak

{
1−bk

1−b
, b 6= 1

k, b = 1

=







1
1−b

(
1−aN

1−a
− 1−(ab)N

1−ab

)

, a, b, ab 6= 1

1
1−b

(
1−aN

1−a
− N

)

, b = 1
a
6= 1

1
1−b

(

N − 1−bN

1−b

)

, b 6= a = 1

a2 aN (−1+N(a−1−a−2))+1
(1−a)2 , a 6= b = 1,

N(N−1)
2 , a = b = 1

1 Comparing the notation, γp(f) is the periodic (p) coun-
terpart to the more general (g) characteristic function,
γg(f). Superscript p is used to indicate that a variable

is constructed based on γp(f) and vice versa for g.

which immediately gives Σp
N (f, ϕ) as in the

Lemma. The first term of the second moment
above is

V1(f, ϕ, η, ζ)

= γg(−η)γg(ζ)

N−1∑

k=0

ei2π(η−f)kT

k−1∑

l=0

e−i2π(ζ−ϕ)lT

= γg(−η)γg(ζ)Σp
N (f − η, ζ − ϕ),

since γg(f) = E[e−i2πfτk ] was the CF of τk. The
second term is the sum over l = k,

V2(f, ϕ, η, ζ) =

N−1∑

k=0

ei2π(η−f−ζ+ϕ)kT γg(ζ − η)

= γg(ζ − η)Γp
N (f − η − ϕ + ζ)

and, finally, the third term is

V3(f, ϕ, η, ζ)

= γg(−η)γg(ζ)

N−1∑

l=0

e−i2π(ζ−ϕ)lT
l−1∑

k=0

ei2π(η−f)kT

= γg(−η)γg(ζ)Σp
N (ζ − ϕ, f − η).

Identification of terms gives the result of the
Lemma. �

5. EXAMPLE

This section describes an example of parameter
estimation for the signal

s(t; θ) = a0 sin(2πf0t) (15a)

θ =
(
a0 f0

)T
. (15b)

The transform of s(t; θ) is then

S(f ; θ) =
a0

2i
(δ(f − f0) − δ(f + f0)) . (15c)

From the expression of the transform statistics
in Lemmas 1 and 2, it is straightforward to use
Eqs. (13) and (14) to calculate the mean value
and covariance in the distribution in Eq. (12).

To find the best parameter vector θ the maximum
likelihood estimator will be used. The DTFT is
calculated for the frequencies f = n/NT, n =
0, .., N − 1, i.e., we get the DFT, and will be
stacked in the vector Y N . The likelihood function
for both sampling cases is then

l(θ) = (Y N − µ(θ))∗C(θ)−1(Y N − µ(θ))+

+ ln det(C(θ)),
(16)

where µ(θ) is the mean vector with the kth
element being

(µ(θ))k = E[Y (
k

NT
)|θ],

and C(θ) is the covariance matrix with element
n,m being

(C(θ))n,m = Cov(Y (
n

NT
), Y (

m

NT
)
∣
∣ θ).



Then,

θ̂ = arg min
θ

l(θ) (17)

is the ML-estimation of the amplitude and fre-
quency of the sinusoid.

The sampling of the signal, s(t), is done with jitter
sampling noise, zk = s(kT + τk), and we will
compare two ways of estimating the parameters.
First we model the noise as additive and use the
common frequency domain ML method to esti-
mate the parameters. This crude approximation
is compared to using the fact that the noise is
jitter on the measurement times to produce the
ML estimate.

Type 1 Approximate the signal samples as cor-
rupted by measurement noise but not sample
noise, τk = 0 in Eq. (9b):

E[Y (
k

NT
)] =

a0

2i

(
Γp

N (
k

NT
− f0)+

− Γp
N (

k

NT
+ f0)

)
,

Cov(Y (
n

NT
), Y (

m

NT
)) =

σ2

N
Γp

N (
n − m

NT
),

=
σ2

N

∞∑

r=−∞

δ(
n − m

N
− r)

Type 2 Let the signal samples be corrupted by
sample noise but not measurement noise, vk = 0
in Eq. (9a):

E[Y (f)] =
a0

2i

(
γg(−f0)Γ

p
N (f − f0)+

− γg(f0)Γ
p
N (f + f0)

)
.

The covariance is given from Lemma 2 and
Eqs. (15c) and (14).

Plots of the likelihood function, Eq. (16), averaged
over 50 Monte Carlo realizations of τk, using
the sampling noise model (Type 2), are given in
Figure 1. The global minimum is clearly shown,
but it is obvious that the likelihood function also
has local minima.

To be able to show the performance of the esti-
mates from Eq. (17), 16 Monte Carlo runs were
made for 17 different frequencies and 19 different
amplitudes. In Figure 2, the resulting mean errors
and the standard deviations are shown. The esti-
mation of the frequency is fairly similar for the two
methods, (Type 1 and 2), while in the estimation
of the amplitude, the model with measurement
noise (Type 2) gives a large bias. This is easily
explained with the results from Lemma 1, where
it was shown that the difference in mean value,
between Type 1 and 2 was an amplitude scaling
with the CF γg(f). For both cases the standard
deviation increases for larger values of the true
parameters, f0 and a0. Though, the standard de-
viation is significantly smaller for â when using
the Type 2 model.

To further explain the increase in the standard de-
viation we study the sampling noise model (Type
2) further. In Figure 3, the standard deviation

is depicted for f̂ and â as a function of both
the true frequency and the true amplitude. These
plots show, that it is harder to estimate a higher
frequency independent of the amplitude, and this
property also affects the ability to estimate the
amplitude, when a0 is large. It is always easy to es-
timate zero amplitude regardless of its frequency.

6. CONCLUSIONS AND FUTURE WORK

We have performed a preliminary investigation of
system identification in the frequency domain for
nonuniformly sampled signals, where the actual
sample times are perturbed from the nominal
uniform values by an unknown realizations of
a stochastic process. A continuous time model
frequency domain maximum-likelihood approach
was taken. It was shown that for estimation of
amplitude and frequency in a single sinusoid, our
method gives unbiased estimates and a smaller
variance compared to a crude amplitude error
approximation of the time errors. In future work,
we will evaluate our method on output error
models, and also consider parameterized sampling
noise pdf’s.
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