
APPLICATION OF A NETWORKED
DECENTRALIZED MPC TO SYNGAS

PROCESS IN OIL INDUSTRY

S. Longhi ∗ R. Trillini ∗∗ M. Vaccarini ∗
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Abstract: The performance of a networked decentralized model predictive control
is analyzed and tested on an industrial process characterized by strong interactions.
The proposed control architecture is based on a set of independent agents which
implement independent model predictive control strategies and exchange a reduced
set of information by a local network. The experimental results are satisfactory
and comparable with those obtained by the classical centralized model predictive
control strategy. Copyright c© 2005 IFAC
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1. INTRODUCTION

Production processes are generally composed by
different plants, which are interconnected and
characterized by significant interactions. In gen-
eral, a simple control solution for the regulation of
these plants based on independent controllers does
not guarantee the overall process performance and
stability. Therefore for these processes two differ-
ent solutions can be developed: a centralized con-
trol solution, where all the interactions are con-
sidered, or a decentralized control solution where
each independent control agent is able to acquire
estimations or measurements of the interactions.

In this paper the use of a model predictive con-
trol strategy is proposed for the control agents
operating in a decentralized control architecture.
In general, the optimum policy for each agent
does not guarantee the global optimum. Global
objectives, such as closed-loop stability or some
performance requirements for the global process
require coordination among the control agents.

The required coordination can be introduced by a
hierarchical decentralized control scheme, where
a supervisor computes the global optimum and
coordinates all the control agents. In this solution
the reliability is low, the quantity of informa-
tion to be exchanged is high and the supervisor
velocity to react to parameters changes is low,
because it works at a low sampling frequency
(Šiljak, 1996). A decentralized filtering and con-
trol architecture managed by a global coordinator
has been proposed in (Katebi and Johnson, 1997)
for guaranteing steady state optimality of the
control actions. A different solution based on the
team theory and asynchronous teams has been
recently proposed in (Camponogara, 2000). In
(Jia, 2003) the global process is decomposed into
subsystems based on the structural properties and
physical constraints and each agent controls one
of them making use of local model, objectives
and constraints. In the developed solutions sat-
isfactory performances are guaranteed in the case
of weak interactions among subsystems. Recently,
networked distributed control systems for chemi-
cal plants have been also developed with signif-
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Fig. 1. Identified gasifier model.

icant results and potential new implementation
issues (El-Farra et al., 2004).

In this paper a contribution to decentralized im-
plementation of model predictive control strat-
egy is proposed. The innovative solution is based
on independent agents and on a local network
used for exchanging a reduced set of information.
This Networked Decentralized Model Predictive
Control architecture (in the following referred
as NDMPC), guarantees satisfactory performance
also in the case of strong interactions among sub-
systems. The performance of the proposed solu-
tion is tested on a process characterized by strong
interactions and here assumed as a case study.

2. CASE STUDY

In this paper a gasification process is considered
for testing the proposed networked decentralized
model predictive control. In an Oil Industry the
gasification process is the main part of a Syngas
Manufacturing Process Plant (SMPP). It consists
in the production of syngas from the reaction
between Oxygen, Steam and the Charge Oil (Oil),
that is a visbreaking residual composed by heavy
hydrocarbons. The syngas, which is rich of H2, CO
and other hydrocarbons, is used in a Combined
Cycle Power Plant (CCPP) for steam and power
generation. The control objective for this process
is the maximization of the Cold Gas Efficiency
(CGE) and the minimization of the Specific Oxy-
gen Consumption (SOC). CGE and SOC both
depend on the rate of H2 and CO in the syngas.

Based on these definitions, O2/Oil and Steam/Oil
ratios are considered as manipulated variables
which have to be imposed in order to obtain the
desired values for the controlled variables H2 and
CO. To optimize CGE and SOC, a hierarchical
control structure is considered. In this structure
the reference values of H2 and CO are imposed
by an higher controller and the control actions
O2/Oil and Steam/Oil ratios are computed by a
lower controller which implements the proposed
networked distributed architecture.

For a given composition range of the Oil, a linear
dynamic model of this process has been developed
by means of an identification procedure based on
historical data of the gasifier, (Barboni, 2002).
The identified input-output model is shown in
Figure 1. In addition to the manipulated vari-
ables O2/Oil and Steam/Oil, two disturbance in-
puts d1 and d2 are introduced for modelling the
disturbances and other dynamics. Furthermore,
a sampling period Tc = 300s is imposed and
the following input and output ranges are con-
sidered: 0, 390 ≤ Steam/Oil ≤ 0, 449, 1, 0453 ≤
O2/Oil ≤ 1, 0636, 42, 50%Vol ≤ H2 ≤ 44, 30%Vol,
44, 07%Vol ≤ CO ≤ 46, 00%Vol.

3. CENTRALIZED MPC

Model predictive control (MPC) is a control tech-
nique based on the receding horizon principle that
is also known as receding horizon control (RHC)
(Soeterboek, 1992). At each sampling time, using
a predictive model of the system dynamics, the
response of the process to changes in manipulated
variables over a fixed horizon p (called the pre-
diction horizon) is predicted. Based on a proper
objective function, a finite-horizon optimal control
problem is solved to obtain current and future
moves of the manipulated variables. Only the first
computed move is actually applied to the real sys-
tem whereas all other control actions in the opti-
mal control sequence are discarded. The same pro-
cedure is repeated at the next control step based
on the new measurement (Garćıa et al., 1989; Qin
and Badgwell, 2000; Rawlings, 2000).

Denoting by y ∈ Rny the process output vector,
r ∈ Rny the reference vector, u ∈ Rnu the control
input vector, z ∈ Rnz the measurable disturbance
vector, x̂ (k) ∈ Rn the initial state estimation
and ∆u (k | k) , u (k | k) − u (k − 1 | k) the con-
trol input move, the standard MPC optimization
problem at control step k is

min J
∆u(k|k ),...,∆u(k+m−1|k )

(1a)

where

J =
p∑

l=1

‖ŷ (k + l |k )− r (k + l)‖Γl
y
+

+
m∑

l=1

‖∆u (k + l − 1 |k )‖Γl
u
, (1b)

subject to model constraints

x̂ (k + l |k ) = f (x̂ (k + l − 1 |k ) ,

u (k + l − 1|k) , z (k + l − 1)) (2a)

ŷ (k + l |k ) = g (x̂ (k + l |k ) ,

u (k + l|k) , z (k + l)) (2b)

l = 1, . . . , p



and operating constraints

ymin
l ≤ ŷ (k + l |k ) ≤ ymax

l l = 1, . . . , p (3a)
|∆u (k + l |k )| ≤ ∆umax

l l = 1, . . . ,m (3b)

umin
l ≤ u (k + l |k ) ≤ umax

l l = 1, . . . ,m (3c)

where m ∈ N (m ≤ p) is called the control horizon.

Stability, feasibility and robustness problems have
been analyzed and different contributions are pro-
posed in literature (Cheng and Krogh, 2001; Be-
mporad and Morari, 1999; Mayne et al., 2000).

4. NETWORKED DECENTRALIZED MPC

In this paper a NDMPC is analyzed where the
control actions are computed by a set of subcon-
trollers which are independent agents able to dy-
namically exchange a restrict set of information.
This control architecture is applied to a process
where in general there are strong interactions
among the M subsystems Si characterized by the
input ui and the output yi, i = 1, . . . , M . Each
agent Ai implements a MPC algorithm for the
subsystem Si where the optimization problem is
solved making use of local information acquired
on Si and the estimate of the interactions among
Si with the other subsystems Sj , j = 1, . . . , M ,
j 6= i. In particular, the future state trajectories
and the future control actions over the prediction
horizon have to be exchanged among subsystems.
The agents Aj which exchange information with
Ai are called neighboring agents of Ai. A local
area network is used for data exchanging.

The agent Ai is composed of two parts: an opti-
mizer and an estimator. Based on the exchanged
information the estimator produces an interac-
tion estimate which is used together with local
measurements by the optimizer to solve the MPC
optimization problem and to estimate the state
predictions. The first control action of the optimal
sequence is applied to the subsystem Si and the
optimal control sequence and the state predictions
over the control horizon are transmitted to the
neighboring agents by the local area network. This
strategy leads to a completely distributed coordi-
nated control scheme (Jia and Krogh, 2001; Cam-
ponogara et al., 2002).

It is assumed that the agents are synchronous
and that the communication channel introduces
a delay of one sampling period. Therefore the
exchanged information are delayed and referred
to the previous sampling instant and each agent
can exchange information with the other agents
only one time for each sampling interval.

Assuming, for the sake of simplicity but without
loss of generality, that the prediction and control
horizons are the same for each agent, in NDMPC
the optimization problem of each agent Ai at

control step k can be stated by relations similar
to (1), (2) and (3) where disturbance vector z
includes, in this case, the interactions with the
other subsystems Sj , j 6= i. The problem here
considered is stated in the following subsection.

4.1 Control problem formulation

Consider the linear discrete time process de-
scribed by:

x (k + 1) = Ax (k) + Bu (k) + Ew (k) (4a)

y (k) = Cx (k) + Fv (k) (4b)

where x(k) ∈ Rn is the state vector and w(k) ∈
Rn

w and v(k) ∈ Rnv are white gaussian noises with
zero mean value and covariance matrixes Q and
R respectively. If E and F are diagonal block
matrices, the overall system (5) can always be
decomposed in M subsystems Si, i = 1, . . . , M
of the form

xi (k + 1) = Aixi (k) + Biui (k) + Eiwi (k) +
+ Gizi (k) (5a)

yi (k) = Cixi (k) + Fivi (k) + Hizi (k) (5b)

where zi (k) ∈ Rnzi is the interaction vector,
xi (k) ∈ Rni , ui (k) ∈ Rnui , yi (k) ∈ Rnyi are
the state vector, the manipulated variables vector
and the output vector of Si respectively. Since
matrices E and F are supposed diagonal block,
the stochastic disturbances wi (k) ∈ Rnwi and
vi (k) ∈ Rnvi affects only the subsystem Si. This
hypothesis is not too restrictive in a distributed
framework because is highly improbable that the
same disturbance affects two far areas. The inter-
action vector zi (k) contains both the state and
the input vector of the other subsystems Sj , j 6= i:

zi (k) ,
[
u′1 (k) · · ·u′i−1 (k)u′i+1 (k) · · ·u′M (k)

x′1 (k) · · ·x′i−1 (k)x′i+1 (k) · · ·x′M (k)
]′ (6)

Note that the non zero blocks of the row block
matrices Gi and Hi characterize the interactions
with the other subsystems Sj and then the num-
ber of neighboring agents of Ai. At the sampling
instant k, neither uj (k) nor xj (k) for j 6= i are
available by the agent Ai but only their predic-
tions previously sent by the agent Aj are known.
The state l-step ahead prediction to be used in
the MPC strategy is:

x̂i (k + l |k ) = Al
ix̂i (k |k ) +

+
l∑

s=1

As−1
i [Biui (k + l − s |k )+

+ Giẑi (k + l − s |k − 1)] . (7)

where x̂i (k |k ) is the estimate of xi(k) at the
time k and ẑi (k + l − s |k − 1) is the prediction
of zi (k + l − s) computed at the time k − 1.



By equation (5b), the corresponding output l-step
ahead prediction has the following form:

ŷi (k + l |k ) = Cix̂i (k + l |k )+
+ Hiẑi (k + l |k − 1) . (8)

In the receding horizon strategy, only the first ele-
ment of the optimal control sequence ui (k |k ) will
be applied to the process whereas the other ones
will be recomputed at the next control instants.
Thus agent Ai sends to the neighboring agents
the computed values ui (k + l |k ) and x̂i (k + l |k )
for l = 1, . . . , p that during the transient behavior
have a low reliability. In general this fact reduces
the performances of the overall system. Therefore
the MPC strategy of agent Ai has to be modified
in order to guarantee that at least the next control
action ui (k + 1 |k ) will be actually applied to the
process. This solution requires an integration on
the coordination strategy that is described in the
following subsection.

4.2 Completely distributed coordination strategy

The distributed coordination can be achieved
assuming that, at time k, the agent Ai ap-
plies the previously computed control action
ui (k |k − 1) which has been sent to the neigh-
boring agents and computes the future control
actions ui (k + 1 |k ) , . . . ,ui (k + m |k ). This solu-
tion improves the control performances because
each agent can compute its predictions and moves
based on real input data. The drawback is that
this technique increases the reaction time of one
sampling period.

The agent Ai considers a functional to be opti-
mized of the form

Ji =
p∑

l=1

‖ŷi (k + l |k )− ri (k + l)‖Γl
yi

+

+
m∑

l=1

‖∆ui (k + l |k )‖Γl
ui

, (9)

where ∆ui (k |k ) , ui (k |k ) − ui (k − 1 |k ).
Defined the vector of output prediction by

Ŷi (k + 1 |k ) , [ŷ′i (k + 1 |k ) · · · ŷ′i (k + p |k )]′ ,

it can be expressed as

Ŷi (k + 1 |k ) = Li + Mi∆Ui (k) (10)

where

∆Ui (k) ,
[
∆u′i (k + 1 |k ) · · ·∆u′i (k + m |k )

]′

and matrix Mi depends on the model matrices
Ai, Bi and Ci, while matrix Li depends on
x̂i (k |k − 1), yi (k), ui (k |k − 1) and zi (k |k − 1),
. . . , zi (k + p |k − 1).

Using the relation (10), the objective function (9)
of Ai takes the following form:

Ji = ∆U′
i (k)Hi∆Ui (k)+

− G′i (k + 1 |k )∆Ui (k) , (11)

where

Gi (k + 1 |k ) , 2M′
iΓYi

[Ri (k + 1 |k )− Li]

Hi , M′
iΓYiMi + ΓUi .

with ΓYi , diag
{
Γ1

yi
, . . . ,Γp

yi

}
and ΓUi ,

diag
{
Γ1

ui
, . . . ,Γm

ui

}
assigned and Ri (k + 1 |k ) ,

[r′i (k + 1) · · · r′i (k + p)]′. For each agent Ai, input
and output constraints can be expressed in terms
of ∆Ui (k) and, for each i = 1, . . . ,M , the opti-
mization problem associated with the considered
NDMPC strategy can be stated as follows:

min
∆Ui(k)

∆U′
i (k)Hi∆Ui (k) +

− G′i (k + 1 |k )∆Ui (k) (13a)

s.t. Φi∆U i (k) ≥ ϕi. (13b)

where Φi is a suitable matrix composed by Mi

and some identity blocks while ϕi is a vector
containing the limits ymin

i,l , ymax
i,l , umin

i,l , umax
i,l and

∆umax
i,l of the local constraints. Equations (13a)

and (13b) define a quadratic program which has
to be solved on-line at every sampling instant.

In order to test the performances of the proposed
NDMPC for highly coupled subsystems interact-
ing also through input variables, this control strat-
egy is applied to the gasificator introduced in
Section 2 as a case study.

5. RESULTS

Performances of the distributed control strategy
have been tested by numerical simulations and
compared with the best solution obtained by
the classical centralized MPC strategy where all
information are available for the computation of
the optimal solution.

The estimated linear MIMO input-output model
of the considered plant, that is schematically
shown in Figure 1, can be stated in the state space
form (2) with v (k) = w (k) =

[
d1 (k) d2 (k)

]′,
u (k) =

[
u1 (k) u2 (k)

]′, y (k) =
[
y1 (k) y2 (k)

]′,
state space dimension n = 17 and

A = diag {α1, α2, α3, α4,α5,α6}
B =

[
β11 β12

β21 β22

]
C = diag {γ1, γ2}

E = diag {ε1, ε2} F = diag {φ1, φ2}
where

α1 =
[

0.9513 0 0
1 0 0
0 1 0

]
α2 =

[
0.9975 0 0

1 0 0
0 1 0

]

α3 =
[

1.2060 −0.1309 −0.0789
1 0 0
0 1 0

]

α4 =
[

0.7981 0 0
1 0 0
0 1 0

]
α5 =

[
0.7984 0 0

1 0 0
0 1 0

]

α6 =
[

1.2630 −0.2646
1 0

]
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Fig. 2. Constrained NDMPC with agents imple-
menting the proposed completely distributed
coordination strategy (solid line) and classi-
cal centralized MPC (dashed line).
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Fig. 3. Constrained NDMPC with agents im-
plementing the simple coordination strategy
(solid line) and classical centralized MPC
(dashed line).
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Fig. 4. Constrained DMPC with independent
agents implementing a decentralized MPC
without networked data exchange (solid line)
and classical centralized MPC (dashed line).

β11 = [ 1 0 0 0 0 0 0 0 0 ]′ β12 = [ 0 0 0 1 0 0 0 0 0 ]′

β21 = [ 1 0 0 0 0 0 0 0 ]′ β22 = [ 0 0 0 1 0 0 0 0 ]′

ε1 = [ 0 0 0 0 0 0 1 0 0 ]′ ε2 = [ 0 0 0 0 0 0 1 0 ]′

γ1 = [ 0 0.0296 −0.0009 0 0.0007

0.0008 1.1375 −0.5571 −0.0786 ]
γ2 = [ 0 0.0069 −0.0846 0 −0.0136

−0.0162 1.0579 −0.7291 ]
φ1 = 0.9954 φ2 = 0.9930 .

The plant input-output relationship analysis pro-
vided that input u1 and u2 are strongly interactive
with output y1 and y2 respectively. Therefore the
plant has been decomposed in two subsystems Si

with input ui and output yi, i = 1, 2, described
by the state space form (5) where

A1 = diag {α1,α2, α3} B1 = β11 C1 = γ1

E1 = ε1 F1 = φ1 G1 = β12 H1 = 0,

A2 = diag {α4,α5, α6} B2 = β22 C2 = γ2

E2 = ε2 F2 = φ2 G2 = β21 H2 = 0.

The interaction between subsystems S1 and S2

is given by the manipulated variables and this
allows to test the effectiveness of the proposed
coordination strategy. The range of validity of the
considered plant model requires to impose the set
of constraints stated in Section 2.

In all the plotted results, the outputs [H2]
and [CO] are measured in percentage of vol-



ume (%Vol), the control inputs [Steam/Oil] and
[O2/Oil] are adimensional quantities and the la-
bels in the time axis represent the sample instants.
Moreover two gaussian noises have been applied
to the inputs d1 and d2 and all the weighting
matrices of the controllers have been tuned in
order to obtain the best possible performances.

Behaviors of the NDMPC strategy proposed in
Subsection 4.2 are shown in Figure 2 for a refer-
ence trajectory composed by a random sequence
of steps (gray line). The behaviors of the classical
centralized MPC strategy are also represented by
the dashed lines. With the introduced networked
decentralized control strategy based on two inde-
pendent agents, the control performances are sim-
ilar to those obtained by the classical centralized
MPC strategy that represents the best solution.

Defining the output errors ei (k) , yi (k)− ri (k),
i = 1, 2, the mean square output errors ēa

i ,
i = 1, 2 obtained with the completely distributed
coordination strategy are ēa

1 = 1.4 · 10−5 and
ēa
2 = 6.3 · 10−5, respectively, that are similar to

the mean square output errors ē∗i obtained with
the classical centralized MPC: ē∗1 = 1.7 · 10−5,
ē∗2 = 0.7 · 10−5. Figure 3 shows the behavior of a
distributed coordination without the completely
distributed coordination strategy between agents
A1 and A2 stated in Subsection 4.2. This solution
introduces a slight loss of performances during the
transients behavior but it is more reactive. In fact
the mean square output errors ēb

i obtained with
this control strategy are similar to that of the
proposed coordination strategy (ēb

1 = 1.4 · 10−5,
ēb
2 = 6.4 · 10−5) but the corresponding overshots

are relatively bigger. The performances of a cou-
ple of non interacting agents which implement
a DMPC without networked data exchange, are
shown in Figure 4. In this case the absence of
communication causes a significant degradation of
the closed loop response and the control errors ēc

i

are ēc
1 = 4.3 · 10−5, ēc

2 = 41.0 · 10−5.

Similar results are obtained in a wide set of ex-
perimental tests which are summarized in Table 1
for five reference sequences with increasing width.

Table 1. Percent mean square output er-
rors referred to the mean square output
errors of the classical centralized MPC.

Subsystem S1

I II III IV V

ēa
1 % 0 -3 -9 -14 -22

ēb
1 % -4 -7 -14 -20 -23

ēc
1 % 267 324 211 139 134

Subsystem S2

I II III IV V

ēa
2 % 51 109 651 630 678

ēb
2 % 259 154 939 847 724

ēc
2 % 8512 7569 8243 6259 4567

6. CONCLUSIONS

The preliminary results obtained by the proposed
NDMPC are satisfactory if compared with those
obtained by the classical centralized MPC. Good
performances are obtained by data exchanging
among the control agents which allows to produce
a local estimate of the mutual interactions. The
analysis of the closed loop stability is under inves-
tigations by the extension to the considered case
of analysis results stated in (Jia, 2003). Moreover,
also robustness results for the proposed control
solution are needed in order to handle model un-
certainties and parameter variations. In particu-
lar, under bounded uncertainties, a min-max opti-
mization problem can be considered and a robust
control action can be found by the minimization
of the objective function for that value of uncer-
tainties which maximizes the objective function.
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