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Abstract: This paper is concerned with the problem of robust stability of a class of
uncertain linear systems, where the system state-matrices considered are affinely
dependent on the uncertain parameters. Affine parameter-dependent Lyapunov
functions are exploited to prove stability, and a robust stability criterion for the
above class of systems to be affinely quadratically stable (AQS) is given in terms
of linear matrix inequalities (LMIs). A comparison with the existing tests for AQS
is given, and it is shown that the robust stability criterion provides a test that
is not more conservative than the existing tests. Numerical examples are given to
illustrate the results. Copyright c°2005 IFAC
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1. INTRODUCTION

Robust stability analysis for control systems with
parameter uncertainties is one of fundamental
issues in systems theory, many important ad-
vances have been achieved, see (Apkarian et al.,
2001; Feron et al., 1996; Gahinet et al., 1996;
Scherer, 1997; Tuan and Apkarian, 2002; Zhou
et al., 1996) and the references therein. For lin-
ear systems with affine parameter uncertainties,
a comprehensive development via the notion of
quadratic stability (i.e., use of a single quadratic
Lyapunov function of the form V (x) = xTPx to
prove stability, (Barmish, 1982)) is presented by
the Linear Matrix Inequality (LMI) approach in
(Boyd et al., 1994). However, the use of a single
Lyapunov function for robust stability often leads
to overly conservative results. To overcome this,
affine parameter-dependent Lyapunov functions
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which depend on the real uncertain parameters
are used to establish robust stability criteria in
(Gahinet et al., 1996), which is less conservative
than quadratic stability. In (Feron et al., 1996), a
sufficient condition for the existence of an affine
parameter-dependent Lyapunov function is pre-
sented in terms of LMIs, and the resulting sta-
bility criterion is less conservative than Popov’s
stability criterion.

Recently, more general parameter-dependent Lya-
punov functions, the Projection Lemma(Gahinet
and Apkarian, 1994) and the multiplier technique
have been exploited to develop less conservative
robust stability criteria (Apkarian et al., 2001;
de Oliveira et al., 1999; Dettori and Scherer, 1998;
Dettori and Scherer, 2000; Iwasaki, 1997; Iwasaki,
1998; Iwasaki et al., 2001; Peaucelle and Arze-
lier, 2001; Scherer, 1997). The multiplier tech-
nique consists of parameter dependent multipliers
(Dettori and Scherer, 2000; Iwasaki, 1998) and
parameter independent multipliers (Dettori and



Scherer, 1998; Iwasaki et al., 2001; Scherer, 1997),
which reduces the problems of robust stability
and performance analysis to convex optimization
problems, and results in various robustness tests.
However, the relation among these tests appears
to be unclear. Generally, it is difficult to compare
the degree of conservatism associated with the
proposed robustness tests. But it becomes possible
when the type of parameter-dependent Lyapunov
functions used to prove stability is specified. Some
such comparisons have been done in (Feron et
al., 1996; Iwasaki, 1997; Iwasaki et al., 2001)

This paper will address the problem of robust
stability analysis for a class of uncertain lin-
ear time-invariant systems, where the system
state-matrices considered are affinely dependent
on the uncertain parameters. Affine parameter-
dependent Lyapunov functions are exploited to
prove stability, and a robust stability criterion for
this class of systems to be affinely quadratically
stable (AQS)(Gahinet et al., 1996) is given in
terms of linear matrix inequalities (LMIs). Com-
paring with the existing robust stability criteria
for AQS, it is shown that the proposed robust
stability criterion is no more conservative than the
AQS results in (Dettori and Scherer, 2000; Feron
et al., 1996; Gahinet et al., 1996; Iwasaki, 1998;
Peaucelle and Arzelier, 2001). The paper is or-
ganized as follows. The problem statement and
some preliminaries are given in Section 2. Section
3 presents the robust stability criterion, and the
comparison with the existing robust stability cri-
teria for AQS. Section 4 concludes the paper.

Notation: For a matrix E, ET and E−1 denote its
transpose and inverse if it exists, respectively. For
a column-rank deficient matrix H, NH denotes a
matrix whose columns form a basis for the null
space of H. I and Ik denote the identity matrix
with an appropriate dimension and k× k identity
matrix, respectively.

2. PROBLEM STATEMENT AND
PRELIMINARIES

Consider an uncertain linear time-invariant sys-
tem described by

ẋ(t) = A(δ)x(t) (1)

where x(t) ∈ Rn is the state, and A(δ) is affinely
dependent on δ, i.e.,

A(δ) = A0 +
NX
i=1

δiAi (2)

The real parameter vector δ = [δ1 · · · δN ]T is
uncertain but constant in time and satisfies

| δi |≤ γ, i = 1, · · · , N (3)

Definition 1(Feron et al., 1996): The system
(1) is said to be affinely quadratically stable
(AQS) if there exist N + 1 symmetric matrices
P0, P1, · · · , PN such that, for all δi satisfying (3),

P (δ) := P0 +
NX
i=1

δiPi > 0 (4)

and

P (δ)A(δ) +A(δ)TP (δ) < 0 (5)

Then the problem considered in this paper is as
follows.

Affinely quadratic stability problem: For a
given γ > 0, is the system (1) AQS?

Remark 1: For the robust stability problem,
many significant advances have been achieved. In
(Gahinet et al., 1996), the S-procedure is applied
to give a test for AQS, which is less conserv-
ative than Popov’s stability criterion. Based on
the multiconvexity condition for scalar quadratic
functions, a different test for AQS is presented
in (Feron et al., 1996). Recently, the parameter
dependent multiplier approach or the vertex sep-
arator approach are exploited to derive robust
stability criteria for systems with affine parameter
uncertainties in (Dettori and Scherer, 2000) and
(Iwasaki, 1998), respectively, and a test for robust
stability is derived in (Peaucelle and Arzelier,
2001) by using the Projection Lemma(Gahinet
and Apkarian, 1994). All these robust stability
criteria also provide tests for AQS. In the next
section, we will use the approach in (Iwasaki et
al., 2001) to present a sufficient condition for
AQS, and then prove that the latter is no more
conservative than the above-mentioned ones.

The following preliminaries will be used in the
development. The set of vertices of the cube
described by (3) is denoted by δv, i.e.,

δv = {[δ1 · · · δN ]T : δi ∈ {−γ, γ}, i = 1, · · · , N}(6)

Lemma 1 ((Iwasaki et al., 2001; Scherer, 1997)):
Let matrices Q = QT , F , and a compact subset
of real matrices H be given. Then the following
statements are equivalent:
(i) for each H ∈ H

ξTQξ < 0 for all ξ 6= 0 such that HF ξ = 0;
(ii) there exists Θ = ΘT such that

Q+ FTΘF < 0, NT
HΘNH ≥ 0 for all H ∈ H.

3. ROBUST STABILITY ANALYSIS

Denote

X1 = [x1 · · · xN ]
T ∈ RNn (7)



E1 = [ In · · · In ]
T ∈ RNn×n (8)

∆ = diag[δ1In · · · δNIn] (9)

P 1 = [P1 · · · PN ]
T ∈ RNn×n (10)

A1 = [A1 · · · AN ] ∈ Rn×Nn (11)

Then we have

Theorem 1: Consider the uncertain system (1),
and assume that A0 is Hurwitz. Then the follow-
ing two statements are equivalent:
(i) the system (1) is affinely quadratically stable;
(ii) there exist symmetric matrices P0, P1, · · · , PN
and Θ ∈ R2Nn×2Nn such that·

P0
P 1

¸
[A0 A1 ] + (

·
P0
P 1

¸
[A0 A1 ])T

+

·
E1 0
0 INn

¸T
Θ

·
E1 0
0 INn

¸
< 0 (12)

and·
I
∆

¸T
Θ

·
I
∆

¸
≥ 0 for all δi satisfying (3) (13)

hold.

Proof: By definition 1, (i) is equivalent to that
there existN+1 symmetric matrices P0, P1, · · · , PN
such that (4) and (5) holds for all δi satisfying (3).
From (7)-(11) and (2), it follows

xTP (δ)A(δ)x= (xTP0 +X
T
1 P

1)(A0x+A
1X1)

=

·
x
X1

¸T ·
P0
P 1

¸
[A0 A1 ]

·
x
X1

¸
(14)

X1 = ∆E1x (15)

(15) is equivalent to

[∆ − I]
·
E1 0
0 INn

¸ ·
x
X1

¸
= 0 (16)

By Lemma 1, (14) and (16), the equivalence of
(5) and (ii) follows. Furthermore, by the result in
(Feron et al., 1996), conditions (4) and (5) are
equivalent to (5) under the assumption that A0 is
Hurwitz. Thus, the proof is complete. 2

Theorem 1 gives a necessary and sufficient con-
dition for the uncertain system (1) to be AQS
via the parameter dependent Lyapunov function
V (x) = xTP (δ)x with P (δ) given by (4). However,
condition (13) is nonconvex, it is difficult to be
verified. The following theorem presents a convex
sufficient condition.

Theorem 2: The system (1) is affinely quadrat-
ically stable if A0 is Hurwitz and, if there exist

symmetric matrices P0, Pi (i = 1, · · · ,N), and a
symmetric matrix Θ given by

Θ =

·
Θ11 Θ12
ΘT12 Θ22

¸
(17)

with Θ11 ∈ RNn×Nn, and
Θ22ii ≤ 0, i = 1, · · · , N (18)

such that (12) holds and, moreover,·
I
∆

¸T
Θ

·
I
∆

¸
≥ 0 for all δ ∈ δv (19)

where Θ22ii ∈ Rsp×sp (i = 1, · · · , N) are the block
matrices on the diagonal of Θ22.

Proof: This follows from Theorem 1, and the
method in (Iwasaki et al., 2001). Details are
omitted. 2

Theorem 2 presents a sufficient condition for
affinely quadratic stability (AQS) of affine parameter-
dependent systems, which is from the vertex sep-
arator approach or the parameter-independent
multiplier approach (Iwasaki et al., 2001; Dettori
and Scherer, 1998). The robust stability condi-
tion is convex, and can be checked by solving a
set of LMIs. For the topic of AQS, there have
been some applicable analysis methods (Dettori
and Scherer, 2000; Feron et al., 1996; Gahinet
et al., 1996; Iwasaki, 1998; Peaucelle and Arze-
lier, 2001). However, the relation among these
tests appears to be unclear. The following theorem
will show that the robust stability criterion given
in Theorem 2 is no more conservative than the
existing ones.

Theorem 3: Consider the uncertain system (1),
and P (δ) given by (4). Assume that A0 is Hurwitz.
Then the condition in Theorem 2 is feasible,
i.e., there exist symmetric matrices P0, Pi (i =
1, · · · , N), and a symmetric matrixΘ given by (17)
such that (18), (12) and (19) hold, if one of the
following robust stability conditions holds:
(i) there exist symmetric matrices P0, P1, · · · , PN
and V0 with V0 ≤ 0, and matrices S1 and S2 such
that

M1(∆) : =

·
ST1 A(δ) +A(δ)

TS1 −A(δ)TV0A(δ)
P (δ)− ST1 +A(δ)TST2

P (δ)− ST1 +A(δ)T
−S2 − ST2 + V0

¸
< 0, for δ ∈ δv (20)

(ii) there exist symmetric matrices P0, P1, · · · , PN
and V = [Vij ]N×N ∈ RNn×Nn with Vii ∈ Rn×n
and

Vii ≤ 0, i = 1, · · · , N (21)

and matrices W and Z such that



M2(∆) : =

·
P (δ)A0 +A

T
0 P (δ) P (δ)A1

(A1)TP (δ) 0

¸
+

·
E1 0
0 INn

¸T
Θ(∆)

·
E1 0
0 INn

¸
< 0, for δ ∈ δv (22)

where

Θ(∆) =

·
Θ11 WT +∆TZT

W + Z∆ V − Z − ZT
¸

(23)

with Θ11 = −(∆TV∆+∆TW +WT∆).

(iii) there exist symmetric matrices P0, P1, · · · , PN
and Mi, i = 1, · · · , N such that

PiAi +A
T
i Pi +Mi ≥ 0 for i = 1, · · · ,N (24)

Mi ≥ 0 for i = 1, · · · , N (25)

and

M3(∆) : =P (∆)A(∆) +A(∆)
TP (∆)

+
NX
i=1

δ2iMi < 0 for all δ ∈ δv (26)

(iv) there exist symmetric matrices P0, P1, · · · , PN
and S = diag[S1 · · ·SN ] with Si ∈ Rn×n, and
a skew-symmetric matrix Ts = diag[Ts1 · · ·TsN ]
with Tsi ∈ Rn×n such that S > 0 and·

P0
P 1

¸
[A0 A1 ] + (

·
P0
P 1

¸
[A0 A1 ])T

+

·
E1 0
0 INn

¸T ·
γ2S −Ts
Ts −S

¸ ·
E1 0
0 INn

¸
< 0(27)

The following lemmas will be used in the proof of
Theorem 3.

Lemma 2: Let W ∈ R(N+1)n×(N+1)n be a sym-
metric matrix. If

I
F1
...
FN


T

W


I
F1
...
FN

 ≥ 0 (28)

holds for any Fi ∈ Rn×n (i = 1, · · · , N), then
W ≥ 0.
Proof: If W ≥ 0 does not hold, then there exists a

vector


x
y1
...
yN

 with x 6= 0 such that

x
y1
...
yN


T

W


x
y1
...
yN

 < 0

Since x 6= 0, we have matrices F1, · · · , FN such
that yi = Fix, i = 1, · · · ,N . Thus,

xT


I
F1
...
FN


T

W


I
F1
...
FN

x < 0
which contradicts with (28). 2

Denote

F = diag[F1 · · ·FN ] (29)

P (F ) = P0 +
NX
i=1

FiPi (30)

A(F ) = A0 +
NX
i=1

AiFi (31)

M1R(F ) = S
T
1 A(F ) +A(F )

TS1 −A(F )TV0A(F )
+(P (δ)− ST1 +A(δ)TST2 )
× (S2 + ST2 − V0)−1
× (P (δ)− ST1 +A(δ)TST2 )T (32)

M1RE = [M1REij ](N+1)×(N+1)

:=

·
ST1 [A0 A

1]
0

¸
+

·
ST1 [A0 A

1]
0

¸T
−[A0 A1]TV0[A0 A1] + (

·
P0
P 1

¸
−
·
ST1
0

¸
+[A0 A

1]TST2 )(S2 + S
T
2 − V0)−1

× (
·
P0
P 1

¸
−
·
ST1
0

¸
+ [A0 A

1]TST2 ) (33)

with M1REii ∈ Rn×n (i = 0, 1, · · · , N).

M2R(F ) = P (F )A0 +A
T
0 P (F )

T

−(ET1 FTV FE1 +ET1 FTW +WTFE1)

+(P (F )A1 +WT +ET1 F
TZT )(Z + ZT − V )−1

×(P (F )A1 +WT +ET1 F
TZT )T (34)

M2RE = [M2REij ](N+1)×(N+1)

:=

· ·
P0
P 1

¸
A0 0 · · · 0

¸
+

· ·
P0
P 1

¸
A0 0 · · · 0

¸T
−diag[0 V ]−

·
0 W
0 0

¸
−
·
0 W
0 0

¸T
+(

·
P0
P 1

¸
A1 +

·
WT

0

¸
+

·
0
ZT

¸
)

× (Z + ZT − V )−1

× (
·
P0
P 1

¸
A1 +

·
WT

0

¸
+

·
0
ZT

¸
)T(35)



with M2REii ∈ Rn×n (i = 0, 1, · · · , N).

M3RE = [M2REij ](N+1)×(N+1)

:=

·
P0
P 1

¸
[A0 A

1] + (

·
P0
P 1

¸
[A0 A

1])T

+diag[0 M11 · · ·MNN ] (36)

Lemma 3: (i) If S2 + S
T
2 − V0 > 0, then·

P0
P 1

¸
[A0 A

1] + (

·
P0
P 1

¸
[A0 A

1])T ≤M1RE (37)

(ii) If Z + ZT − V > 0, then·
P0
P 1

¸
[A0 A

1] + (

·
P0
P 1

¸
[A0 A

1])T ≤M2RE (38)

(iii) If Mii ≥ 0 (i = 1, · · · , N), then·
P0
P 1

¸
[A0 A

1] + (

·
P0
P 1

¸
[A0 A

1])T ≤M3RE (39)

Proof: It is omitted here, due to the space limita-
tion. 2

Proof of Theorem 3: (i) By Schur complement and
(32), (20) is equivalent to that S2 + S

T
2 − V0 > 0

and

M1R(∆) < 0 (40)

By Lemma 1 and (??), it follows that there exists

a symmetric matrix Θ =

·
Θ11 Θ12
ΘT12 Θ22

¸
such that

M1RE +

·
E1 0
0 INn

¸T
Θ

·
E1 0
0 INn

¸
< 0 (41)

and (13) hold. From (33), V0 ≤ 0 and S2 + ST2 −
V0 > 0, it follows that

M1Rii ≥ 0, i = 1, · · · , N
which further implies that Θ22ii ≤ 0, i =
1, · · · , N . Thus, from Lemma 2, (19) holds and
(12) follows from (37).
(ii) By Schur complement and (34), it follows that
(22) is equivalent to

M2R(∆) < 0 (42)

The rest of the proof can be completed by (38),
(21), (42) and the arguments similar to those for
(i), and the details are omitted.
(iii) By (39) and Mii ≥ 0 (i = 1, · · · , N), it is
immediate.

(iv) Notice that Θ =

·
γ2S −Ts
Ts −S

¸
satisfies (18)

and (19), so the conclusion follows. 2

Remark 2: Theorem 3 presents a comparison
between Theorem 2 and the existing results for

AQS, where P (δ) is required to be in the form of
(4). Condition (i) is an extension of the results for
AQS in (Dettori and Scherer, 2000) and (Peaucelle
and Arzelier, 2001), where (Peaucelle and Arze-
lier, 2001) applies the Projection Lemma (Gahinet
and Apkarian, 1994) to give the following con-
dition for AQS: A0 is Hurwitz, and there exist
symmetric matrices P0, P1, · · · , PN , and matrices
S1 and S2 such that

M1(∆) : =

·
ST1 A(δ) +A(δ)

TS1
(P (δ)− ST1 +A(δ)TST2 )T
P (δ)− ST1 +A(δ)TST2

−S2 − ST2

¸
< 0, for δ ∈ δv (43)

which is same as the result in (Dettori and
Scherer, 2000), and corresponds to a special case
of condition (i) when V0 = 0. Condition (ii) is
given in (Iwasaki, 1998). The stability criteria in
(Dettori and Scherer, 2000) and (Iwasaki, 1998)
are obtained by using parameter-dependent mul-
tiplier or separator approach. Condition (iii) is
from (Gahinet et al., 1996), which is based on
the result on multiconvexity(Iwasaki et al., 2001).
Condition (iv) is given in (Feron et al., 1996),
which is derived by using S-procedure approach.
Theorem 3 shows that the stability criterion given
by using vertex separator approach or parameter-
independent multiplier approach(Iwasaki et al.,
2001; Dettori and Scherer, 1998) provides a sta-
bility test that is no more conservative than the
above existing results for AQS.

Example 1: The considered uncertain linear
time-invariant system is described by (1)-(3) with

A0 =

 −5 2 1
−10 −5 −1
5 1 −6

 , A1 =

 0 1 0
0 0 0
0 0 0


A2 =

 0 0 0
0 0 0
0 1 0

 , A3 =

 0 0 0
0 1 1
0 0 1


We are interested in computing the maximal value
of γ such that the system is AQS. The optimal
γ for each method is given in Table 1. It is as
expected that Theorem 2 gives the best stability
margin γ = 2.957 for the system to be AQS.
However, it requires more computational time
than most of the existing tests.

Regarding computational complexity, the number
of variables and the number of LMIs are used
as measures of computational burden. It is easy
to see that the methods given in (Iwasaki, 1998)
and Theorem 2 require more variables than others,
and the methods in (Dettori and Scherer, 2000),
(Peaucelle and Arzelier, 2001), (Iwasaki, 1998),
(Gahinet et al., 1996), Condition (i) in Theorem 3
and Theorem 2 involve conditions on the vertices



of the parameter set and require exponentially
growing numbers of LMI constraints with respect
to N . So the methods given in (Iwasaki, 1998) and
Theorem 2 will be computationally very demand-
ing, while the method in (Feron et al., 1996) is
of less computational burden than others when n
and N are large. In Table 1, DS and PA represent
the methods in (Dettori and Scherer, 2000) and
(Peaucelle and Arzelier, 2001), respectively.

Table 1. Optimal γ for each method

Method γ

Theorem 2 2.957

Condition (i) in Theorem 3 2.943

DS, PA 2.943

(Iwasaki, 1998) 2.957

(Gahinet et al., 1996) 2.936

(Feron et al., 1996) 1.38

Remark 3: It should be pointed out that the tests
for AQS given by Condition (i) in Theorem 3,
(Dettori and Scherer, 2000), (Peaucelle and Arze-
lier, 2001) and (Iwasaki, 1998)(see (43) and (ii) in
Theorem 3) are also applicable for the case where
polytopic Lyapunov functions are used to prove
robust stability, which is a more general type of
Lyapunov functions than that affine parameter-
dependent Lyapunov functions considered here.

Remarks 4: In (Tuan and Apkarian, 2002), based
on monotonicity concept, a sufficient condition
for AQS is given in terms of LMIs. For the
uncertain system in Example 1, the optimal γ
for the method in (Tuan and Apkarian, 2002)
is 2.927, which shows that the method is more
conservative than Theorem 2 for this numerical
example. However, it is difficult to prove the
relationship between Theorem 2 and the method
in (Tuan and Apkarian, 2002) for the general case.

4. CONCLUSIONS

In this paper, we have investigated the problem
of affinely quadratic stability (AQS) of a class of
uncertain linear systems, where the system state-
matrices considered are affinely dependent on
the uncertain parameters, and affine parameter-
dependent Lyapunov functions are exploited to
prove stability. A robust stability criterion for the
class of systems to be affinely quadratically stable
(AQS) is given in terms of linear matrix inequal-
ities (LMIs), which is based on the vertex sepa-
rator approach or parameter-independent multi-
plier approach(Iwasaki et al., 2001; Dettori and
Scherer, 1998). The comparison with the existing
tests for AQS is given, and it is shown that the
robust stability criterion is no more conservative
than the existing tests. A further research topic
is to extend the comparison to cases where more
general types of parameter-dependent Lyapunov

functions such as polytopic Lyapunov functions,
and Lyapunov functions that depend on the pa-
rameters in a linear fractional manner (Iwasaki et
al., 2001). Obviously, such an extension would be
very significant, but nontrivial.

REFERENCES

Apkarian, P., H.D. Tuan and J. Bernussou (2001).
IEEE Trans. on Automatic Control 46, 1941—
1946.

Barmish, B.R. (1982). IEEE Trans. on Automatic
Control AC-27, 848—850.

Boyd, S., L. El Ghaoui, E. Feron and V. Balakris-
han (1994). Linear Matrix Inequalities in Sys-
tems and Control Theory. SIAM. Philadel-
phia.

de Oliveira, M.C., J. Bernussou and J.C. Geromel
(1999). Systems & Control Letters 37, 261—
265.

Dettori, M. and C.W. Scherer (1998). Proc. 37th
IEEE Conf. on Decision and Control, Tampa,
Florida pp. 2798—2799.

Dettori, M. and C.W. Scherer (2000). Proc. 39th
IEEE Conf. on Decision and Control, Syd-
ney, Australia pp. 4187—4192.

Feron, E., P. Apkarian and P. Gahinet (1996).
IEEE Trans. on Automatic Control AC-
41, 1041—1046.

Gahinet, P. and P. Apkarian (1994). Int. J. Robust
Nonlinear Control 4, 421—448.

Gahinet, P., P. Apkarian and M. Chilali (1996).
IEEE Trans. on Automatic Control AC-
41, 436—442.

Iwasaki, T. (1997). Proc. 36th IEEE Conf. on
Decision and Control, San Diego, California
AC-41, 4880—4885.

Iwasaki, T. (1998). Proc. 37th IEEE Conf. on
Decision and Control, Tampa, Florida AC-
41, 3021—3026.

Iwasaki, T., and G. Shibata (2001). IEEE Trans-
actions on Automatic Control 46, 1195—1208.

Peaucelle, D. and D. Arzelier (2001). IEEE Trans-
actions on Automatic Control 46, 624—630.

Scherer, C.W. (1997). Proc. 36th IEEE Conf.
on Decision and Control, San Diego, CA
pp. 2602—2607.

Tuan, H.D. and P. Apkarian (2002). IEEE Trans-
actions on Automatic Control 47, 378—384.

Zhou, K., J.C. Doyle and K. Glover (1996). Ro-
bust and Optimal Control. Prentice Hall. New
Jersey.


